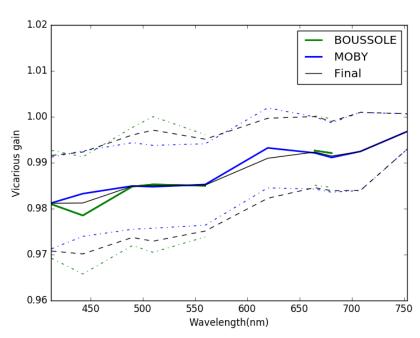
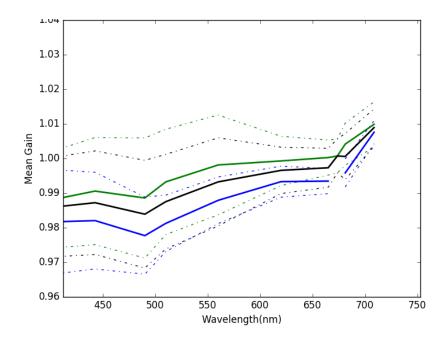
Heading to our 20s Some reflections from the BOUSSOLE project **David Antoine** Vincenzo Vellucci

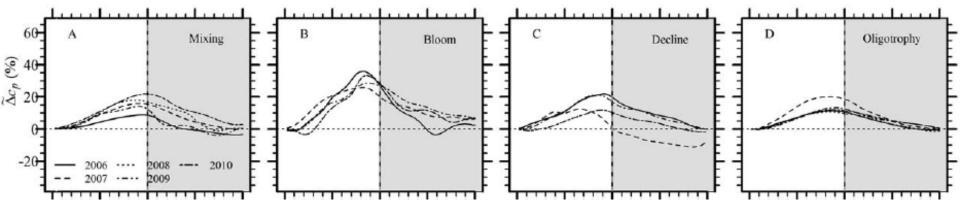

the **200th monthly cruise** to the BOUSSOLE site was carried out on 18th-19th September 2018



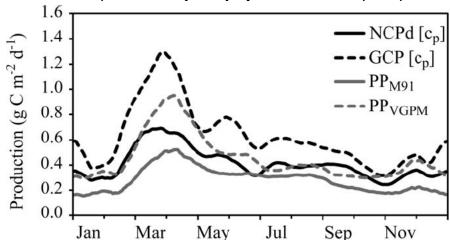
Why all this?

Calibration matters; most recent SVC results

MERIS 4th reprocessing



OLCI, preliminary SVC gains



Why all this?

Science matters; recent examples

Kheireddine M, Antoine D (2014) Diel variability of the beam attenuation and backscattering coefficients in the north-western Mediterranean Sea (BOUSSOLE site). *Journal of Geophysical Research*, 119, 5465-5482

Barnes M, Antoine D (2014) Proxies of community production derived from the diel variability of particulate attenuation and backscattering coefficients in the northwest Mediterranean Sea. *Limnology and Oceanography*, 59(6), 2133-2149.

How did we get there?

1998	First thoughts about developing an optics mooring
1999	Buoy conception & design (->engineering pool tests), in search of funding supports
1333	
	1 st grant from CNES (TOSCA)
	Development essentially made from remainder money from past ESA contracts
2000	Construction buoy "v0", qualification deployment, still in search for funding
2001	Start of monthly cruises (July 2001). Hiring first technical staff.
	June 2001: signature of the UPMC/NASA LOA
	First specific ESA funding for BOUSSOLE
2002	1 st deployment of the instrumented buoy \rightarrow failed (total loss, construction defect)
	Reimbursement by our insurance: continuation of the project
	Complementary engineering studies (IFREMER/MARINTEK) → buoy version 2
	ENVISAT / MERIS launch
2003	Construction of the new buoy
	Operational deployment: September 2003
	operational acployment. September 2005
2003	Operational period (2 sister buoys & instrumentations; rotations every 6 months)
2005	Progressive development of scientific exploitation of the data
	Progressive development of scientific exploitation of the data
2006	Unsuccessful request to being "labelled" as a "SO" at INSU
2009	Long-term commitment from CNES (2019 at least) in the frame of Sentinel-3
	·
2011	Start of the "BIOCAREX" project funded by ANR (2011-2014)
2016	S3A launch
2018	S3B launch

••••

PROJECT PRINCIPAL INVESTIGATOR

ongoing)

David ANTOINE

Vincenzo VELLUCCI

Melek GOLBOL

Francis LOUIS

Alec SCOTT

Grigor OBOLENSKY

Mustapha OUHSSAIN

Staff members (100%

working for BOUSSOLE)

Project responsibilities Responsible for buoy maintenance and data processing (October 2007 -

Who did this?

Staff members (shared with other activities of our laboratory)	Project responsibilities
Edouard LEYMARIE	Radiance camera development
Joséphine RAS	HPLC and absorption measurements
Céline DIMIER	HPLC and absorption measurements
Edoardo SOTO GARCIA	Maintenance / deployment of the CTD
Vincent TAILLANDIER	Maintenance of the CTD / CDT data processing
Emilie DIAMOND	Responsible for DYFAMED monthly cruises
David LUQUET	Management of diving operations on site
Didier ROBIN	Management of diving operations on site
Guillaume DE LIEGE	Management of diving operations on site, servicing
Past staff members	Project responsibilities
Bernard GENTILI	Data processing codes

Maintenance / deployment of the CTD/IOP package

Servicing, electronics, design

HPLC and absorption measurements

Responsible for monthly cruises (March 2013 - ongoing)

-5 October 2018 in NPL, Teddington, London, UK

Dominique TAILLIEZ CTD + IOPs, all monthly cruises

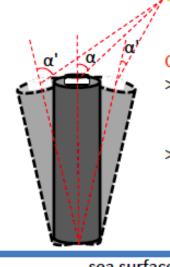
Catherine BROWN Web site design and data base development

Guislain BECU Responsible for monthly cruises, data processing (2004-2007)

Personaible for monthly cruices, data processing (2003-2004)

BOUSSOLE: fact sheet

- 18+ years of existence
- 15+ years of operational data production (95% success rate for data acquisition in the 4 years before 2018)
- Currently one of the 2 sites used for vicarious calibration of satellite ocean colour, along with MOBY
- A unique radiometry + optics + BGC data set
- A model for how science & operational objectives come together for mutual benefits
- Permanent effort towards increased data quality (calibration, characterization, QA/QC in general etc...)
- A small, yet highly efficient, technical staff team
- A number of scientific users (publications)
- In good standing to continue for the coming decade

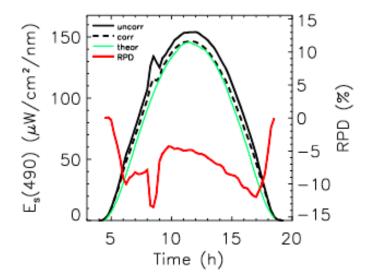

Progressive improvement in radiometric data quality

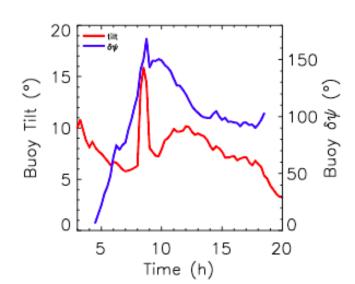
- Essentially rely on manufacturer calibration (Satlantic)
- SQM-II: we tried and abandoned
- Immersion coefficients: did some experiments
- Inter-comparison of sensors
- Extrapolation of underwater L_u/E_u measurements
- Identification and quantification of uncertainty sources
- Better bio-fouling mitigation
- Progressive move from multi- (7 λ 's) to hyper-spectral
- Many incremental improvements in data processing (shading, tilt effects, changes of instruments depth, long-term corrections for instrument drifts or biofouling, short-term events identification..)
- Future improvements: cosine response correction, BRDF correction for tilt effects.

Correcting E_s for tilt

COSINE CORRECTION OF SURFACE IRRADIANCE

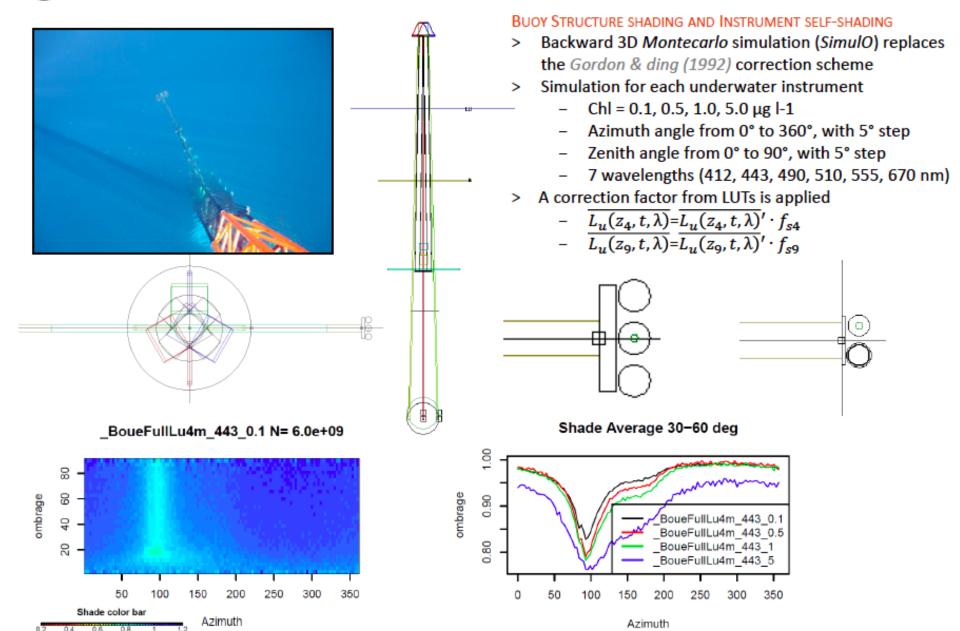
First the direct fraction of Es is estimated following Gregg & Carder, 1990

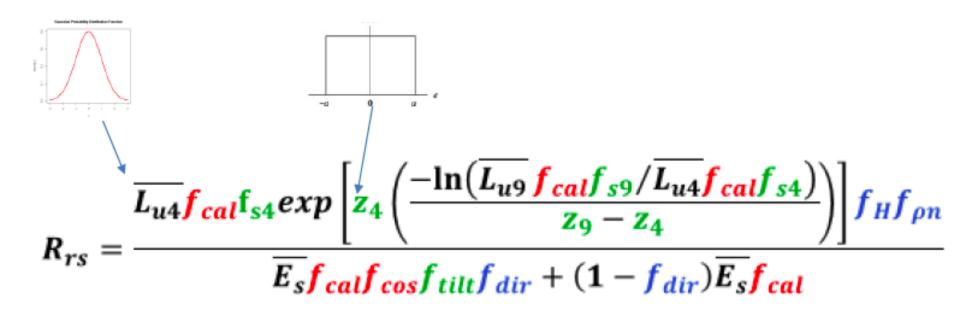

$$- \overline{E_S(t,\lambda)}' = \overline{E_S(t,\lambda)}' \cdot f_{dir} + \overline{E_S(t,\lambda)}' \cdot (1 - f_{dir})$$


> The correction is then applied to the direct fraction of Es

$$- E_S(t,\lambda) = \overline{E_S(t,\lambda)'} \cdot f_{dir} \cdot f_{tilt} + \overline{E_S(t,\lambda)'} \cdot (1 - f_{dir})$$

Where $f_{tilt} = \frac{\cos(\alpha t)}{\cos(\alpha t)}$


sea surface



Shading corrections

Defining/quantifying uncertainties The measurement equation

Preliminary error budget

u in % λ in nm	E_s	L_{u4}	L_W	R_{rs}	$u_{abs}(R_{rs})$
412	2.1	2.6	3.1	3.7	0.000215
443	2.0	2.6	3.1	3.7	0.000225
490	2.0	2.6	3.0	3.7	0.000175
510	2.0	2.6	3.0	3.7	0.000155
560	2.0	2.6	3.1	3.7	0.0000725
665	2.1	3.9	5.9	6.3	0.00000410
681	2.1	4.0	5.9	6.3	0.0000195

Do we need an "error budget"?

What matters are the uncertainties

How we combine them into a "budget" might actually be confusing, and might be hardly comparable among different systems

- What matters for SVC is the number of match-ups with the lowest uncertainty
- What matters for validation is the N° of match-up with (maybe) a lightly higher threshold
- What matters for science are data with uncertainties below that of the signals to study

The goal: each measurement comes with an uncertainty. Then, it is up to the users to set the uncertainty threshold above which data are rejected.

Where do we set the bar?

Full characterization and calibration of radiometers is a time consuming and expensive process.

Therefore the question is: can we find the right balance between the effort that we put on calibration/characterisation and the benefit in terms of improved data quality?

Example of the SQM-II: was way too much work for marginal benefit

Corollary: is this where the effort has to be put? Are protocols more important?

And, in the same vein: is a lot of this needed because we do not have the appropriate instruments?

What about science?

Since inception, BOUSSOLE was conceived as a sustained research activity, rather than as a truly "operational" system.

It has actually become very close to the latter, but still includes a significant research programme

You cannot do otherwise when you operate from a research environment, which in our case is CNRS-INSU-Sorbonne University

It is vital for the motivation of staff

Can provide additional Capex investment

The challenges we faced in 2018

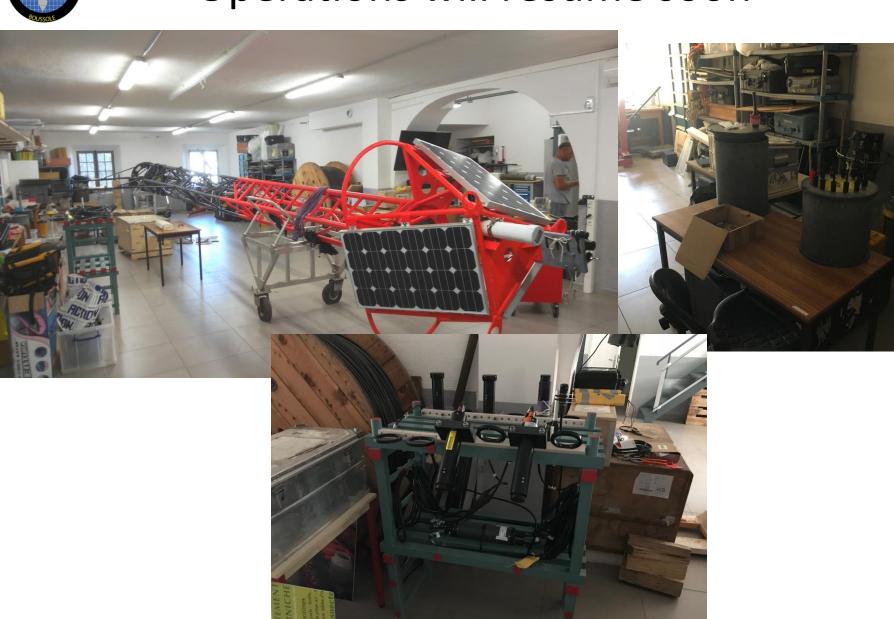
Month	Days with data																												
Jan	1	2	3	4	5	6	<u>7</u>	8	9	10	11	12	13	14	<u>15</u>	16	<u>17</u>	<u>18</u>	<u>19</u>	20	<u>21</u>	22	<u>23</u>	24	 	 28	<u>29</u>	30	31
Feb	1	2	3	4	5	6	<u>7</u>	8	9	10	11	12	13	14	15	16	17	18							 	 			
Mar																									 	 			
Apr																									 	 			
May																									 	 			
Jun																									 	 			
Jul																									 	 			
Aug																									 	 			
Sep																									 	 			
Oct																									 	 			
Nov																									 	 			
Dec																									 	 			

Unfortunately, in 2018 the buoy has taken a "gap year".

The DacNET (central data acquisition system) definitely died, and Satlantic/Seabird were in the process of transitioning their activity from Canada to the US. This has generated unusually long delays for the system maintenance, recalibration etc..

Why did we end up with this situation?

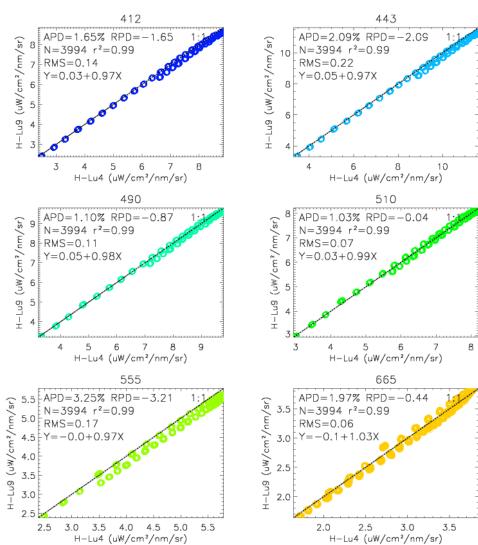
The DacNET (central data acquisition system) was conceived in the late 1990s, and our units built in 2001-2002.


They have proven extremely reliable, but we warned many times about the need to prepare for replacement.

This was not feasible at constant funding, so it was not done.

Lesson: regular capex investment has to be included at regular intervals in the life of such a long-term activity

Operations will resume soon



rkshop, 4-5 October 2018 in NPL, Teddington, London, UK

Inter-comparisons, pre-deployment

Where to now?

Radiometry for Ocean Colour SAtellites Calibration & Community Engagement

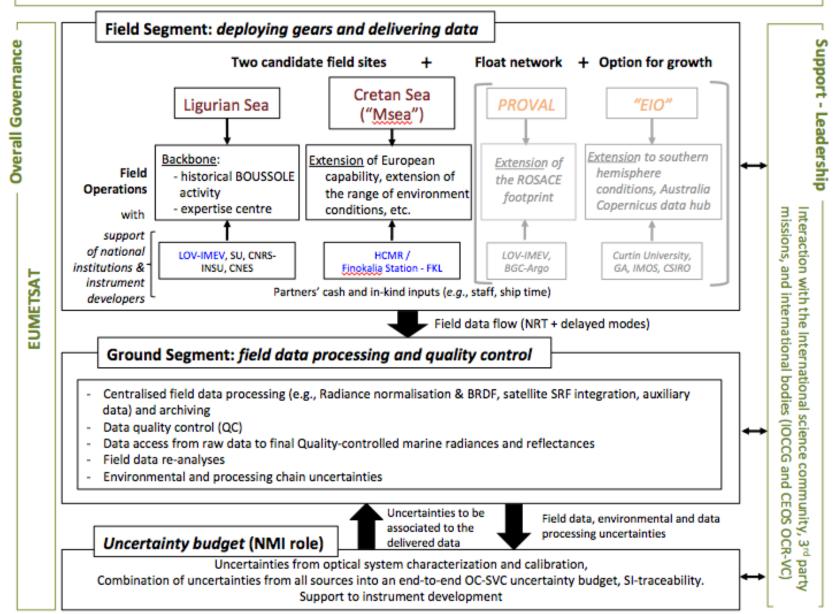
Laboratoire d'Océanographie de Villefranche, Institut de la Mer de Villefranche

Hellenic Centre for Marine Research

ACRI-ST

UK National Physical Laboratory University of Tartu, Tartu Observatory

CIMEL Electronique



ROSACE overall logic

COPERNICUS OC-SVC infrastructure preliminary design

ROSACE overall architecture

