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Abstract. The Mediterranean near-real-time multi-sensor
processing chain has been set up and is operational in the
framework of the Copernicus Marine Environment Mon-
itoring Service (CMEMS). This work describes the main
steps operationally performed to enable single ocean colour
sensors to enter the multi-sensor processing applied to the
Mediterranean Sea by the Ocean Colour Thematic Assembly
Centre within CMEMS. Here, the multi-sensor chain takes
care of reducing the inter-sensor bias before data from dif-
ferent sensors are merged together. A basin-scale in situ bio-
optical dataset is used both to fine tune the algorithms for
the retrieval of phytoplankton chlorophyll and the attenua-
tion coefficient of light, Kd, and to assess the uncertainty as-
sociated with them. The satellite multi-sensor remote sensing
reflectance spectra agree better with the in situ observations
than those of the single sensors. Here, we demonstrate that
the operational multi-sensor processing chain compares suf-
ficiently well with the historical in situ datasets to also confi-
dently be used for reprocessing the full data time series.

1 Introduction

The Copernicus Marine Environment Monitoring Service
(CMEMS) is one of the six services of the Copernicus pro-
gramme. It provides regular and systematic reference infor-
mation on the physical state, variability, and dynamics of the
ocean, ice, and marine ecosystems for the global ocean and
the European seas. CMEMS delivers both satellite and in situ

high-level products prepared by Thematic Assembly Centres
(TACs) and modelling and data assimilation products pre-
pared by Monitoring and Forecasting Centres (MFCs). The
Ocean Colour Thematic Assembly Centre (OCTAC) builds
and operates the European ocean colour operational service
within CMEMS providing global, pan-European, and re-
gional (Arctic Ocean, Atlantic Ocean, Baltic Sea, Black Sea,
and Mediterranean Sea) ocean colour (OC) products based
on Earth observation from OC missions (Le Traon, 2015;
von Schuckmann et al., 2016, 2018). The OCTAC bridges
the gap between space agencies, by providing ocean colour
data, and users who need the added-value information not
available from space agencies. Presently, the OCTAC relies
on current and legacy OC sensors: MERIS (MEdium Res-
olution Imaging Spectrometer) from ESA, SeaWiFS (Sea-
viewing Wide Field-of-view Sensor) and MODIS (Moderate
Resolution Imaging Spectroradiometer) from NASA, VIIRS
(Visible Infrared Imager Radiometer Suite) from NOAA, and
most recently the Copernicus Sentinel 3A OLCI (Ocean and
Land Colour Instrument).

Starting from the Level 2 (L2) data downloaded from
space agencies, the OCTAC generates Level 3 (L3) and Level
4 (L4) products in near-real-time (NRT) and delayed-time
(DT) modes. Within CMEMS, L3 products refer to the single
snapshot, or daily combined products, mapped onto a regu-
lar grid, while L4 are products for which a temporal aver-
aging method and/or an interpolation procedure is applied
to fill in missing data values. The NRT products are oper-
ationally produced daily to provide the best estimate of the
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ocean colour variables at the time of processing. These prod-
ucts are generated soon after the satellite swaths are avail-
able together with climatological ancillary data, e.g. mete-
orological and ozone data for atmospheric correction, and
predicted attitude and ephemerides for data geolocation. In
the DT processing, the updated ancillary data made avail-
able from the space agencies are used to improve the qual-
ity of the NRT data. NRT and DT data streams are hence
designed to fulfil the operational oceanography-specific re-
quirements for the near-real-time availability of high-quality
satellite data with a sufficiently dense space and time sam-
pling (e.g. Le Traon et al., 2015). Generally, once a year,
the full data time series undergoes a reprocessing (REP) to
ensure that the most recent findings are consistently applied
and back-propagated to all data. REP products are multi-year
time series produced with a consolidated and consistent input
dataset and processing software configuration, resulting in a
dataset suitable for long-term analyses and climate studies
(von Schuckmann et al., 2017; Sathyendranath et al., 2017,
and references therein).

Within CMEMS, observations from multiple missions
are processed together to ensure homogenized and inter-
calibrated datasets for all essential ocean variables. Com-
bining the observations from different platforms results in
higher coverage compared with that of the single sensors.
Moreover, the multi-sensor product allows non-expert users
to access a robust and less ambiguous source of information.
Currently in the OCTAC, the NRT and DT multi-sensor L3
and L4 products are derived from MODIS Aqua and NPP-
VIIRS data, while REP includes observations from SeaW-
iFS, MODIS Aqua, MERIS, and NPP-VIIRS. Global REP
products are derived from two datasets: the OC-CCI (Climate
Change Initiative; http://www.esa-oceancolour-cci.org/, last
access: 7 February 2019) funded by the European Space
Agency and the Copernicus GlobColour initially developed
by the GlobColour project (http://www.globcolour.info/, last
access: 7 February 2019) and then updated and produced in
the framework of CMEMS. OLCI is foreseen to be included
into the NRT–DT multi-sensor products in 2019 and in the
REP when the quality of the data is deemed suitable.

In general, DT and REP products are meant to answer dif-
ferent questions and to satisfy different needs such as assim-
ilation into operational models and climate studies, respec-
tively. As such, DT data are expected to be as accurate as
timeliness allows. The accuracy of REP data needs to be sta-
ble in time as these data, which are consistently processed
with a single software version, are used for studying long-
timescale phenomena. For the sake of timeliness, the accu-
racy of the NRT–DT data is relaxed with respect to the one
associated with REP time series. In this respect, one of the
aims of this work is to propagate the REP configuration to
the DT processing mode, allowing for full compatibility be-
tween the two datasets and extending climate-fit research to
the most recent observations.

Regional products differ from their global counterparts as
they are specifically derived to accurately reflect the bio-
optical characteristics of each basin (e.g. Szeto et al., 2011;
Volpe et al., 2007; Pitarch et al., 2016; D’Alimonte and Zi-
bordi, 2003). Due to peculiarities in the optical properties, the
Mediterranean Sea oligotrophic waters are less blue (30 %)
and greener (15 %) than the global ocean (Volpe et al., 2007),
causing an overestimation of the phytoplankton chlorophyll
concentration (Chl) retrievals by standard global algorithms
(e.g. Bricaud et al., 2002; D’Ortenzio et al., 2002). In the
last decade, more accurate regional bio-optical algorithms
(e.g. MedOC4) were implemented in the single-sensor opera-
tional processing chains for the Mediterranean Sea (Santoleri
et al., 2008; Volpe et al., 2012).

The main objective of this work is to provide Copernicus
users with a comprehensive description of the method cur-
rently applied by GOS (the group for Global Ocean Satel-
lite monitoring and marine ecosystem study of the Italian
National Research Council, CNR) in the OCTAC context of
CMEMS to produce the L3 multi-sensor ocean colour prod-
uct over the Mediterranean Sea. The next section (Data and
methods) describes the bio-optical dataset forming the basis
for the development and validation of the regional algorithms
for the Mediterranean Sea, an update of the MedOC4 param-
eterization, and the satellite data input and output of the op-
erational processing chain. Section 3 gives an overview of
the validation results obtained in the comparison between the
multi-sensor satellite products and the in situ data.

2 Data and methods

2.1 The Mediterranean Sea in situ bio-optical dataset:
MedBiOp

The development of geophysical products that best repro-
duce Mediterranean biogeochemical conditions relies on an
in situ bio-optical dataset collected across the basin over
20 years (Fig. 1). Several parameters are routinely measured
both for general oceanographic purposes (e.g. water temper-
ature, salinity, oxygen content, fluorescence, and light atten-
uation) and for the calibration and validation of remote sens-
ing data. These include phytoplankton pigment concentra-
tion via HPLC analysis (high-performance liquid chromatog-
raphy), light absorption due to coloured dissolved organic
matter (CDOM), light absorption due to algal and non-algal
particles as well as to total suspended matter (TSM), par-
ticulate backscattering and apparent optical properties such
as remote sensing reflectance (Rrs), and the diffuse attenua-
tion coefficient (Kd). In this work, the in situ Rrs dataset is
used as input to update the MedOC4 Chl algorithm and to
validate the multi-sensor satellite-derived Rrs product. The
in situ Chl dataset is larger than the Rrs and all samples in
correspondence to optical measurements are used to update
the MedOC4 Chl algorithm, while all others are used to val-
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idate the multi-sensor satellite-derived Chl product. On the
other hand, Kd measurements are only used to fine tune the
Mediterranean algorithm for ocean colour retrieval.

In the OC processing chain the primary parameters used to
derive the geophysical products are the spectral Rrs values.
The most important objective of using the in situ radiometric
measurements is to derive surface, above-water Rrs spectra
from in-water profiles. The multispectral Satlantic profiling
system (OCR-507) is made for measuring the upwelling ra-
diance, Lu(z, λ), as well as the downward and upward irra-
diance, Ed(z, λ) and Eu(z, λ), and includes a reference sen-
sor for the downward irradiance, Es(0, λ), mounted on the
uppermost deck of the ship. Table 1 shows that the in situ
and satellite sensor acquisition bands do not always match.
Hence, to allow for a satellite–in situ data matchup, the in
situ data spectral resolution is increased with the technique
of band shifting (see Sect. 2.2.1). A Sea-Bird CTD and a
tilt sensor are also part of the system. The radiometric mea-
surements are acquired and processed following the method
described in Zibordi et al. (2011). To increase the number of
samples per unit depth, data are acquired using the multicast
technique (D’Alimonte et al., 2010; Zibordi et al., 2004).

Multi-level data processing is achieved using the Soft-
ware for the Elaboration of Radiometer Data Acquisition
(SERDA) developed at GOS. The processing steps follow the
consolidated protocols for the data reduction of in-water ra-
diometry (Mueller and Austin, 1995; Zibordi et al., 2011).
First, data are converted from digital counts into their phys-
ical units. A filter is applied to remove data with a profiler
tilt angle larger than 5◦. In order to reduce the influence of
light variability during the measurements, data from each
sensor are normalized by the above-water downwelling irra-
diance. A least-squares linear regression is performed on the
log-transformed normalized data, whose slope determines
the diffuse attenuation coefficients of spectral upwelling ra-
diance (Kl(λ)), spectral upwelling irradiance (Ku(λ)), and
spectral downwelling irradiance (Kd(λ)); the exponents of
the intercepts are the subsurface quantities (Lu(0−, λ),
Eu(0−, λ), and Ed(0−, λ)). Outliers due to wave perturba-
tions are removed and identified in points differing, by de-
fault, more than 2 standard deviations from the regression
line. The depth layer normally considered relevant for the ex-
trapolation to the surface is 0.3–3 m, but can be changed on
the basis of the characteristics of each profile. The upwelling
subsurface quantities (i.e. Lu(0−, λ), Eu(0−, λ)) are also cor-
rected for the self-shading effect following Zibordi and Fer-
rari (1995) and Mueller and Austin (1995) using the ratio be-
tween diffuse and direct atmospheric irradiance and seawater
absorption. Using the primary subsurface quantities, it is then
possible to derive additional products such as the Q factor at
nadir (Qn(0−,λ)= Eu(0−,λ)/Lu(0−,λ)), the remote sens-
ing reflectance (Rrs(λ)= 0.543 ·Lu(0−,λ)/Es(0,λ)), or the
normalized water-leaving radiance (Lwn(λ)= Rrs(λ)·E0(λ)
with E0(λ) being the extra-atmospheric solar irradiance;
Thuillier et al., 2003).

Fluorimetric measurements associated with CTD casts are
used to increase the depth resolution of the HPLC-derived
chlorophyll. These calibrated fluorimetric casts are then used
to compute the optically weighted pigment concentration
(OWP) as already reported in Volpe et al. (2007).

In addition to the MedBiOp dataset collected by GOS over
the Mediterranean Sea, two fully independent datasets col-
lected at fixed locations are included for the validation in this
study: Rrs data estimated from above-water measurements
at the Aqua Alta Oceanographic Tower (AAOT) as part of
the AERONET-OC network in the northern Adriatic Sea (Zi-
bordi et al., 2009) and Rrs data from the BOUSSOLE buoy
located in the Ligurian Sea (Antoine et al., 2008; Valente et
al., 2016). Moreover, for the validation of the diffuse atten-
uation coefficient we use the independent BGC-Argo float
dataset from Organelli et al. (2016).

2.2 Satellite data processing chain

As mentioned, GOS operates two different processing chains
(Fig. 2) for NRT–DT and REP data production. The input
of both processing chains is the spectral Rrs downloaded
from upstream data providers. Hence, in both cases, the at-
mospheric correction is not part of these processing chains.
This approach differs from the previous regional processing
chains, which started from L1 (Volpe et al., 2007, 2012), as
updates by the space agencies in the L1 to L2 processor re-
sulted in a delay of months before it could be taken up in the
operational processing chain.

As schematically shown in Fig. 2, the NRT–DT chain con-
sists of four parts aimed at populating a 2-year rolling archive
with multi-sensor Level 3 data at daily temporal resolution
(hereafter referred to as Multi). The rolling archive includes
the L3 obtained by the NRT L2 data (i.e. processed with
preliminary ancillary data, calibration known at the time of
acquisition, preliminary climatology, and so on), which are
superseded, generally after 1 month, by the L3 produced in
DT mode. Thus, the processing chain is exactly the same for
the two modes, NRT and DT, the only changes being the
input data from space agencies. Data in the rolling archive
are homogeneous in terms of format and processing soft-
ware, meaning that if, for any reason, a change is made on
the processing chain, the entire rolling archive is processed
back for consistency. The ingested L2 data (NASA process-
ing version R2018.0) currently derive from MODIS Aqua
and VIIRS sensors only. L2 data are downloaded from the
Ocean Biology Processing Group (OBPG) at NASA, which
uses the l2gen processor for the atmospheric correction in its
default parameterization (Mobley et al., 2016). The NRT–DT
chain involves the pre-processing of different sensors with
different wavelengths (as detailed in Sect. 2.2.1) that are then
merged together over a common set of wavelengths (Table 1,
Sect. 2.2.2). Section 2.2.3 provides a description of the algo-
rithms for the satellite-derived Chl estimation and for the at-
tenuation coefficient of light at 490 nm (Kd490). As detailed
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Figure 1. Study area and space–time distribution of the in situ MedBiOp dataset (1997–2016) used in this work. Dots identify the in situ
stations used as sea-truth for satellite data validation, whereas crosses refer to the observations used to develop the regional OC algorithms.

Table 1. Overview of the available wavelengths from VIIRS, MODIS, MERIS, OLCI, and SeaWiFS sensors, those used to produce the REP
dataset (available from PML), and those collected in situ. Target wavelengths of the band-shifting procedure are highlighted in grey. The
column “in situ” refers to the bands of the Lu, Ed, and Es Satlantic radiometers used to compute the algorithm functional forms and described
in the text (The Mediterranean Sea in situ bio-optical dataset: MedBiOp). To allow for a full satellite to in situ data comparison, the in situ
data that are not directly measured (bands without the “x”) are computed via band shifting.

Wavelength (nm) Sensors REP In situ

VIIRS MODIS MERIS OLCI SeaWiFS

410 x
412 x x x x x
413 x
443 x x x x x x x
486 x
488 x
490 x x x x x
510 x x x x x
531 x
547 x
551 x
555 x x x
560 x x
665 x x x
667 x
670 x x
671 x

later, inherent optical properties (IOPs: the absorption due to
phytoplankton, aph, and to detrital and dissolved matter, adg,
and the backscattering due to particles, bbp, all at 443 nm)
are used to align the different sensors over the common set
of wavelengths. For this reason, the IOPs are an active part of
the processing and are also made available to users as output
of the chain.

For the REP processing, Rrs spectra over the common
set of wavelengths (Table 1) are produced by the Plymouth
Marine Laboratory (PML) using the OC-CCI processor ver-
sion 3 (hereafter CCIv3; http://www.esa-oceancolour-cci.
org/, last access: 7 February 2019), merging MERIS, MODIS
Aqua, SeaWiFS, and VIIRS data. As fully detailed in CCI
(2016a), SeaWiFS and VIIRS data are derived from the
OBPG chain using the l2gen processor, while MERIS and
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Figure 2. Flow chart of the processing chains for the two data pro-
duction lines: NRT–DT and REP modes. SA stands for space agen-
cies. The dashed vertical line indicates that the CNR REP process-
ing mode only involves the application of the regional fine-tuned
algorithms for the retrieval of the geophysical quantities.

MODIS Aqua data are processed with the POLYMER atmo-
spheric correction processor (Steinmetz et al., 2011). At the
moment of writing, the CCIv3 is based on the NASA repro-
cessing R2014.0. Within CMEMS, PML runs the regional
CCIv3 processor at 1 km resolution rather than at 4 km as for
the global OC-CCI dataset. In this work, with CCIv3 we will
refer to both the processor and the derived Rrs exclusively
made for CMEMS, whereas with REP we will refer to the
output of this chain, Chl and Kd490. These are consistently
retrieved with the same algorithms as in the NRT–DT chain
(Sect. 2.2.3), updated on a yearly basis, and available to users
on the CMEMS web portal (http://marine.copernicus.eu/, last
access: 7 February 2019).

As shown in Fig. 1, most of the in situ data used for the
validation analyses do not overlap the 2-year rolling archive
(2017–2018 at the time of writing). Hence, for the sole scope
of the product validation, the NRT–DT production chain is
used to process the entire satellite data archive, including
SeaWiFS and MERIS data. SeaWiFS data are obtained from
NASA-OBPG (R2018.0), while MERIS data are from the
ESA third reprocessing with POLYMER, made available by
PML.

2.2.1 NRT–DT single-sensor pre-processing

Once downloaded and quality checked, single-sensor L2 data
are fed into the pre-processing chain to harmonize data from
different sensors in terms of format, projection, and most
of all in terms of a common set of wavelength bands. The
quality checks that are operationally performed soon af-
ter the download are associated with the integrity of data
files or their effective coverage over the region of interest
(the Mediterranean Sea in this case). Moreover, the pre-
processing also takes care of sorting out issues that may af-
fect one sensor only such as the de-striping procedure or the
removal of the bow-tie effect.

De-striping

An important task, operationally performed over both
MODIS Aqua and NPP-VIIRS images, is the application
of a de-striping procedure over L2 products to remove
instrument-induced stripes. These two sensors scan the Earth
surface via a rotating mirror system that reflects the surface
radiance to band detectors. Stripes originate from two hard-
ware problems: (i) the two sides of the mirror are not exactly
identical, and (ii) the band detector degradation is not homo-
geneous. De-striping correction is performed by applying the
method developed by Bouali and Ignatov (2014) and adapted
to ocean colour products by Mikelsons et al. (2014). The pro-
cedure splits the image into a stripe-affected and a stripe-free
part. The stripe-affected part is then passed through a filter
that removes the stripes and is then added back to the stripe-
free component to produce the final de-striped image. The
definition of striped and de-striped domains is achieved by
measuring the gradients (both along and across the scan) and
by selecting as “striped” the ones below the predetermined
threshold values.

Removal of the bow-tie effect

As sensor detectors have constant angular resolution, the
sampled Earth area, i.e. the dimension of the pixel at the
ground, increases with the scan angle. This results in con-
secutive scans to overlap away from nadir, in turn giving the
entire scan the shape of a bow tie. Differently than other sen-
sors such as MODIS Aqua, the aggregation scheme on board
VIIRS removes this effect through a combination of aggrega-
tion and deletion of overlapping pixels, resulting in a series of
rows of missing values at the edge of each L2 granule. These
lines can be identified through the bow-tie removal flag of
l2gen (BOWTIEDEL). In this production chain and in view
of the sensor merging, these missing values are filled in by
linear interpolation. Alas, the L2 flags associated with these
pixels are not updated due to the difficulty of interpolating
binary fields.
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Flagging and mosaicking

Each L2 granule is quality checked via the application of
the L2 flags provided by space agencies. The L2 flags re-
sult from the atmospheric correction procedure and pro-
vide the sensing conditions at pixel scale. The flags cur-
rently applied are those of the OBPG standard processing
(https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/, last access:
7 February 2019), except for the atmospheric correction fail-
ure (ATMFAIL) flag that is not applied to VIIRS because it
overlaps for almost all water pixels over the Mediterranean
Sea with BOWTIEDEL, thus effectively thwarting the inter-
polation of the lines affected by the bow-tie effect. From a
test over 645 granules (3200× 3232 pixels each) acquired
over the Mediterranean Sea in 100 days (10 April to 18 July
2018) it was found that only in 31 pixels was the atmospheric
correction failure flag raised for pixels not affected by bow-
tie deletion or any of the other OBPG standard flags.

Moreover, each granule undergoes a further quality check
by removing all isolated pixels (defined as pixels with a
meaningful value entirely surrounded by pixels with a miss-
ing value) and by filling in all isolated missing pixels (defined
as pixels with a missing value entirely surrounded by pix-
els with a meaningful value) with the median value of their
surrounding valid pixels. All Rrs spectra are further checked
for the presence of negative values, which may occur in the
blue part of the spectrum due to the failure of the atmo-
spheric correction; one negative value within the spectrum
(excluding the 670 nm band) is enough for the entire spec-
trum to be rejected. All available granules for each day are
remapped at 1 km resolution on the equirectangular grid cov-
ering the Mediterranean Sea (6◦W–36.5◦ E, 30–46◦ N). All
re-gridded granules from the same sensor and from the same
day are mosaicked together by simple averaging into a sin-
gle file containing the remote sensing reflectance at nominal
sensor wavelengths.

Band shifting

At the scale of the pixel, the goal is to merge single-sensor
Rrs spectra into a single spectrum. The idea is that from the
Rrs spectrum one can easily derive, directly or indirectly, all
the geophysical parameters of interest not only for the ocean
colour community, but also for the wider biogeochemical
scientific community. One of the problems of multi-sensor
merging is the different set of bands from the various ocean
colour sensors that have to be merged. Some bands are coin-
cident (443 nm), others may differ by a few nanometres (486
and 488 or 410 and 412 nm), and others can be significantly
different (e.g. the green bands of MODIS Aqua, SeaWiFS,
and OLCI, which are 547, 555, and 560 nm, respectively; Ta-
ble 1). A technique to collapse the various spectra on a pre-
defined set of bands is thus essential for multi-sensor merg-
ing; with this aim the band-shifting method described by
Mélin and Sclep (2015) was implemented here with the ap-

plication of the quasi-analytical algorithm (QAA version 6;
Lee et al., 2002, and following updates http://www.ioccg.
org/groups/Software_OCA/QAA_v6_2014209.pdf, last ac-
cess: 7 February 2019) in forward and backward modes. Rrs
is related to the absorption and scattering properties of the
medium, which in turn are given by the additional contri-
butions of all the medium components (seawater, particu-
late, and dissolved matter). Starting from the Rrs at the sen-
sor native wavelengths and from the characteristic spectral
shapes of the IOPs, the QAA allows for the estimation of the
IOPs at target wavelengths. The QAA is then applied in for-
ward mode to estimate the Rrs at these bands. In general, the
band-shifting technique is meant to be applied when source
and target wavelengths differ by a few nanometres. However,
there can be cases in which the spectral distance between
source and target wavelengths is larger, i.e. the estimation of
the band at 510 nm from MODIS Aqua at 488 and 531 nm. In
this case, the band shifting is operated twice: first from 488
towards 510 nm and second from 531 nm towards 510 nm.
The “final” value is computed as the weighted average of the
two, the weight being the inverse of the spectral distance. The
accuracy of QAA retrievals over the Mediterranean Sea was
assessed with a limited number of observations by Pitarch et
al. (2016), who found that bbp at 555 nm was retrieved within
5 % of in situ measurements across open and coastal waters.
This approach produces a set of common bands (in Table 1)
for all sensors and allows for the daily merging of the Rrs
from which it is then possible to derive geophysical products.
The uncertainty introduced by band shifting is estimated in
most cases at well below 5 % of the reflectance value (with
averages of typically 1 %–2 %), especially for open ocean re-
gions (Mélin and Sclep, 2015).

2.2.2 NRT–DT multi-sensor processing: Rrs spectra

Once single-sensor spectra are homogeneous in terms of
wavebands, it is possible for the Rrs from the available sen-
sors to be merged together into single images. The output is
a set of six Rrs images, each of which is treated as an indi-
vidual image independently from the other Rrs bands of the
spectrum.

Differences between MODIS and VIIRS

At pixel scale, several reasons can be at the base of the differ-
ences between two observations. The geometry of the obser-
vations constitutes an issue that is under the control of the at-
mospheric correction scheme. Since this part of the process-
ing is performed by space agencies, this issue is rarely ac-
counted for in the context of L3 multi-sensor merging, which
instead only considers radiometric quantities as fully normal-
ized (Maritorena and Siegel, 2005). The differences between
Rrs retrieved by MODIS and VIIRS vary with the wave-
length (Fig. 3). The distribution of the Rrs ratio at 670 nm
shows the most negative kurtosis. At 412 nm, the median
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Rrs ratio ranges between 0.7 and 1, while at 443 nm it im-
proves and narrows to 0.85 and 1.05 with MODIS being in
general below VIIRS. For the three other bands (490, 510,
and 555 nm), the Rrs ratio distribution displays the narrowest
spread around 1 with the median values ranging between 0.9
and 1.1. Moreover, a pixel is sampled with different geometry
(scattering angle) and not exactly at the same time by the two
sensors; in the Mediterranean Sea, the differences between
the two sensor time overpasses do not exceed 1 h. Here, we
found that the discrepancy between the two Rrs spectra can-
not be ascribed to differences in the overpass times and/or
to the geometry of the observation (Fig. 3). We argue that
there must be other factors responsible for the observed dif-
ferences such as inter-sensor calibration or even the various
bands used for operating the single-sensor atmospheric cor-
rection (eliciting different responses by the atmospheric cor-
rection code and its assumptions and/or simplifications). All
these issues should be addressed before any sensor merging
can effectively be performed (Sathyendranath et al., 2017).

Inter-sensor bias correction

Before merging all the available sensors together at any given
time, their Rrs spectra are individually bias-corrected with re-
spect to their references as detailed below. Here, we extend
the method developed within OC-CCI for reducing inter-
sensor bias (CCI, 2016b), as this is a propaedeutical step
to the proper merging of data collected from different sen-
sors. In practice, when two or more sensors are available
for the same period, one sensor is taken as a reference and
the others are bias-corrected to the reference. For the inter-
sensor bias to be corrected, daily climatological bias maps
are computed at the same spatial resolution of the source data
(e.g. 1 km). During the SeaWiFS era, the method is applied
to SeaWiFS–MODIS–MERIS sensors having SeaWiFS as a
reference. From 2010 onward, the method is applied to the
coupled MODIS–VIIRS using MODIS as a reference after
its bias with SeaWiFS is corrected. The climatological bias
maps were computed using data from 2003 to 2007 for the
SeaWiFS era and from 2012 to 2014 for the other.

Briefly, the OC-CCI scheme to compute the daily climato-
logical bias maps is the following.

1. Over the periods of reference, for each sensor, a rolling
temporary daily average map of Rrs is computed (sim-
ple mean) over the period of 7 days: the data day itself
plus 3 days before and 3 days after.

2. For each day, the ratio between the temporary average
Rrs maps from the various sensors is computed.

3. This allows for the calculation of 365 daily climatology
maps of the ratio between each pair of missions over the
periods of reference.

4. To increase map coverage, smoothing of the daily cli-
matology bias maps over a temporal window of 2N +

1 days (with N = 60) is computed following Eqs. (1)
and (2):

δ (d,x,y)=

∑N
i=−Nwiδi (d + i,x,y)θi∑N

i=−Nwiθi
, (1)

with

wi =
N + 1− |i|
N + 1

, (2)

where δ(d,x,y) is the daily bias map climatology, and
θi = 1 if δi is associated with a valid value and zero oth-
erwise. The value of the weight, w, decreases from 1
for the same day, to N/N + 1 for the days before and
after, to 1/N + 1 for the first and last days of the ±N
day window.

The way the daily climatological bias maps are computed
here differs from the OC-CCI technique. First, the rolling
temporary 7-day average (point 1 of the OC-CCI method
described above) is computed here using Eqs. (1) and (2),
with N = 3. The smoothing of the daily climatology bias
maps is obtained by applying a weighting function (as point 4
of the OC-CCI method described above) in both space and
time, contemporaneously. The spatial kernel of the 3× 3
box centred to the pixel is defined as in the table below.

.
The cumulative effect of these two weighting functions is

given by their cross-product.
Furthermore, the method was not applied to the 670 nm

band because the percent difference between SeaWiFS and
in situ observations at 670 nm is 1 or 2 orders of magni-
tude larger than the blue–green counterparts in both olig-
otrophic and mesotrophic conditions (MedBiOp, BOUS-
SOLE) (Sect. 3). Moreover, the number of matchups between
SeaWiFS and all the available in situ data (MedBiOp, BOUS-
SOLE, and AAOT) at 670 nm is∼ 40 % of those in the blue–
green spectral region (data not shown).

Sensor merging

When merging data from two or more sensors, three pos-
sible conditions can occur: (i) the pixel is observed from
more than one sensor, (ii) the pixel is observed from one sen-
sor only, or (iii) the pixel is in no clear-sky condition or is
masked out because of any of the operational L2 flags from
all sensors. In the latter case the pixel is assigned the miss-
ing value. In the former two conditions the merging is not
straightforward because it strongly depends on the ability to
reduce the inter-sensor bias to zero. When the pixel is sam-
pled by one sensor only but the surrounding pixels by more
than one or by the other sensors, there is an increasing prob-
ability of introducing artefacts or spatial gradients, which in
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Figure 3. 2-D frequency histogram of the daily Rrs ratio (R, on the y axis) and the difference of the cosine of the scattering angle (δ cos)
between MODIS Aqua and VIIRS for each of the six bands of the Multi product (2012–2017). The scattering angle (2s) is defined as 2s =
180
π arccos

(
−cos

(
π

180 θ0
)

cos
(
π

180 θS
)
− sin

(
π

180 θ0
)

cos
(
π

180ϕr
))

, with θ0, θS, ϕr being the solar and sensor zenith angles and the relative
azimuth angle, respectively. R exhibits substantial variability across the spectrum with the values shown in panels (a) and (f) presenting the
larger differences. Overall, the median values of the Rrs ratios at the six bands are within the range 0.9–1.1. The noticeable feature is the lack
of any dependency of R from the geometry of the observation (δ cos).

reality do not exist and are only the result of the merging pro-
cedure. To prevent the occurrence of such horizontal discon-
tinuities, here we apply a smoothing procedure based on the
use of a SeaWiFS daily climatology field, described in Volpe
et al. (2018) and summarized below. First, the field from each
sensor (Fig. 4a, b) is filled with the same relevant daily cli-
matology (Fig. 4e; see below for more details about the cli-
matology), as shown in Fig. 4c, d. Filling is performed as fol-
lows: for each sensor, the difference between the two fields
(observed and climatology) is first computed in correspon-
dence to coexisting values. Such a difference is propagated
and smoothed all over the spatial domain. Missing observa-
tional values are replaced with the climatology corrected by
the computed difference map. This prevents the generation of
sharp gradients in the final merged product. At this stage, the
simple average between all available climatology-filled sen-
sor data is computed. Then all the non-clear-sky pixels are
set to the missing value (Fig. 4f). This is the procedure oper-
ationally and currently applied to data acquired by MODIS
Aqua and VIIRS to produce the multi-sensor Rrs product. It
is important to note that features only present in the climatol-
ogy, but not in the daily single-sensor images, are also absent
in the merged product. In the example of Fig. 4, features of
such a kind can be clearly identified in correspondence to
the Strait of Bonifacio in the Tyrrhenian Sea, which extends
eastwards in the climatology (Fig. 4e) but in none of the other

fields (MODIS Aqua or VIIRS). Another example is given by
the tongue of Modified Atlantic Water (Manzella et al., 1990)
that penetrates the southern sector of the Sicily Channel to-
wards the Libyan coasts, which is present in Aqua, VIIRS,
and in the merged image, but not in the climatology. Simi-
larly, the Rhône River plume, visible in the climatology as a
small reddish spot, is absent from both single-sensor images
and from the merged multi-sensor product.

After all bands are merged, single-pixel Rrs spectra are
available (Fig. 5) for the geophysical products to be com-
puted. Within this step, a mask is computed for keeping track
of the single-sensor inputs to the multi-sensor product and
added to the NetCDF files (Fig. 5b, d). The examples show
two cases of blue and greener waters along the Spanish coast
and in the northern Adriatic Sea, respectively. In both cases,
the satellite Rrs benefiting from the bias correction are closer
to the in situ measurements at all bands.

Climatology

As mentioned, the climatology provides spatial support for
sensor merging. The climatology field is obtained from the
13 years of SeaWiFS data. This daily field has the same
spatial resolution (nominally 1 km at nadir) and projection
(cylindrical) as the operational field. These climatology maps
were created using the data falling into a moving temporal
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Figure 4. Example of how the merging of MODIS and VIIRS works. Rrs 443 from MODIS Aqua (a) and NPP-VIIRS (b) from 1 April 2012.
Panels (c) and (d) are obtained by filling in panels (a) and (b) with daily climatology (e). The merged multi-sensor product is obtained after
removal of the unseen pixels (f). Distribution histograms for each image are included in relevant colour bars.

Figure 5. Rrs spectra from 21 April 2014 (a) from MODIS Aqua (A, blue), NPP-VIIRS (V, red), the merged multi-sensor product with the
application of the bias correction (X, green) and without (grey), and the in situ measurements (black), all in correspondence to the in situ
measurement location shown by the arrow in panel (b). The map in panel (b) is the sensor mask of the day on which the pixels sampled by
MODIS Aqua only are shown in blue and those by NPP-VIIRS only in red; the pixels sampled by both sensors are shown in green. Panels (c)
and (d) refer to the Rrs spectra and sensor mask from 7 April 2015, in the northern Adriatic Sea.
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window of ±5 days. A total of 5 days is deemed to be a
good compromise between the need for filling the spatial do-
main and the de-correlation timescale of the OC data in the
Mediterranean Sea; this has been estimated as being 3 days
on average (the day on which the autocorrelation value is
halved; Volpe et al., 2018). The resulting daily climatology
time series includes the pixel-scale standard deviation, the
average, the median, the modal, the minimum, and the max-
imum values. The next version of the NRT–DT processing
chain will include a climatology field computed by taking
into account the space–time-weighted averaging and a longer
and more recent data time series.

2.2.3 Level 3 geophysical products

The input to all algorithms used to derive the various geo-
physical products is the Rrs spectrum, which in this context
derives from the NRT–DT processing chain described above
and from the CCIv3 processor. It should be noted that in L1
to L2 processing performed by the space agencies, the water-
leaving radiance normalization scheme makes use of Chl val-
ues estimated with standard algorithms. The differences be-
tween standard Chl and MedOC4 estimates in the Mediter-
ranean Sea might affect the accuracy of the resulting Rrs.
However, in the context of L3 multi-sensor merging this in-
consistency cannot be accounted for without performing the
L1 to L2 processing in-house. The previous regional process-
ing chains started from L1 and took this effect into account
(Volpe et al., 2007, 2012). On the other hand, in the opera-
tional oceanography framework, the need to keep the L2 to
L3 processing chain readily up to date imposes a trade-off
between accuracy and timeliness.

As shown in Fig. 2, from this point on, the NRT–DT and
the REP chains collapse as they both use the same algorithms
for computing Chl, Kd, and the IOPs. The next sections ex-
plain how the various algorithms are derived and applied to
Rrs data for their operational application.

Chlorophyll a concentration

There are two main categories of Chl algorithms: empirical
and semi-analytical. Even though the latter type now shows
a performance comparable to that of empirical algorithms,
these still remain more robust and are generally preferred
in the operational context (e.g. NASA processing). Recently,
Sathyendranath et al. (2017) discussed the characteristics that
remote sensing data must have to be used in climate studies.
They pointed out that semi-analytical algorithms would be
preferred to empirical ones because they do not rely on past
observations, which are not necessarily the best approxima-
tion for future observations (Dierssen, 2010). However, they
still lack the robustness typical of the empirical family of al-
gorithms (O’Reilly et al., 2000 among others).

Operational services such as CMEMS aim at providing
data for a wide range of applications from the assimila-

tion of open ocean observations into biogeochemical mod-
els (Teruzzi et al., 2014) to coastal monitoring programmes
(such as the Marine Strategy Framework Directive; e.g.
Colella et al., 2016). Unfortunately, there is not yet a unique
Chl algorithm able to perform with the same accuracy across
different environments. For example, open ocean waters are
prevalently dominated by phytoplankton cells and their prod-
ucts of degradation; these waters are well represented by
chlorophyll concentration and are generally referred to as
Case I waters (Morel and Prieur, 1977). On the other hand,
the optical properties of coastal regions are more often in-
fluenced by various water constituents not necessarily co-
varying with phytoplankton and are referred to as Case II
waters. Since the offshore extension of coastal waters may
vary and be of several kilometres (pixels), depending on the
sea and weather conditions (e.g. coastal filaments may extend
several tens of kilometres in the open ocean), the adoption of
static masks for the application of different algorithms would
result in errors associated with the sharp fronts. One way to
overcome this issue is to merge two Chl products into a single
field after the exact identification of the two realms (Mélin et
al., 2011; Volpe et al., 2012; Moore et al., 2014). At pixel
scale, Rrs spectra are translated into Chl twice: assuming the
entire satellite scene to belong to Case I and to Case II wa-
ters, each with its own algorithm. Then, the water type iden-
tification follows the method developed by D’Alimonte et
al. (2003), which uses the Mahalanobis distance between the
satellite spectrum and the in situ reference spectra (in terms
of the mean values and the covariance matrices of the two ex-
perimental datasets). For Case I Chl reference, D’Alimonte
et al. (2003) used a former version of the current NOMAD
dataset (Werdell and Bailey, 2005). In this work, for Case
I and Case II waters, the MedOC4 (Volpe et al., 2007) and
CoASTS (Berthon et al., 2002; Zibordi et al., 2002) datasets
are used, respectively. This approach is one step towards the
need of the scientific community to deal with products per-
forming equally well in both water types, or at least to know
where the first ends and the second starts (Sathyendranath,
2011, OC-CCI user consultation). To also address the latter
point evidenced by the OC-CCI user consultation, a water
type mask resulting from the Case I–Case II merging step is
conveniently stored into the NetCDF files and made avail-
able to users. Thus, two different algorithms are used to de-
rive Chl in the two optical domains: the ADOC4 algorithm
(D’Alimonte and Zibordi, 2003) is used for the Case II do-
main, while the algorithm for Case I is the subject of the next
paragraph.

Mediterranean Sea – MedOC4 – Case I

The algorithm used to retrieve Chl in the Case I waters
of the Mediterranean Sea is an updated version of the
MedOC4, a regionally parameterized maximum band ratio
(Volpe et al., 2007). Figure 6a shows both the regional and
the global algorithm (OC4v6; https://oceancolor.gsfc.nasa.
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gov/atbd/chlor_a/, last access: 7 February 2019) functional
forms superimposed to the in situ observations collected
in the Mediterranean Sea. The Mediterranean Sea tends to
be “greener” than the Pacific and Atlantic oceans for any
Chl values due to higher CDOM concentrations (Volpe et
al., 2007, and references therein). Considering that the em-
pirical algorithms are the expression of the in situ data from
which they are derived, this figure provides a means for un-
derstanding the need to regionalize the algorithms to avoid
the significant Chl overestimation that would be obtained
with the global algorithm, as already fully documented in
Volpe et al. (2007, and references therein).

An important point that has to be borne in mind is that
the colour of the ocean, in terms of maximum band ratio
(MBR), explains 74 % of the entire phytoplankton variability,
as expressed by the determination coefficient (r2) between
the chlorophyll concentration and MBR (Fig. 6a). This points
to the importance (more than 25 %) of the second-order vari-
ability of the ocean colour signal (Brown et al., 2008) that
should be accounted for by future versions of the operational
algorithms, in line with the recent recommendation about the
use of ocean colour data for climate studies (Sathyendranath
et al., 2017).

Diffuse attenuation coefficient – Kd490

Figure 6b (red dots) shows the in situ diffuse attenuation co-
efficient of light at 490 nm as a function of the Rrs ratio (R =
log10(Rrs490 /Rrs555)) collected in the Mediterranean Sea.
Superimposed to the in situ dataset is also the algorithm func-
tional form (turquoise line) used in the OBPG processing at
global scale (https://oceancolor.gsfc.nasa.gov/atbd/kd_490/,
last access: 7 February 2019). It is clear that the global algo-
rithm only marginally overlaps the in situ data, thus prompt-
ing a regional dedicated algorithm to be developed. The black
line is the in situ data best fit computed as a fourth-power
polynomial expression of the Rrs ratio between 490 and
555 nm.

2.3 Validation framework

The validation of the satellite products was carried out by
pairwise comparison with the in situ observations: Chl and
apparent optical properties, e.g. Kd490 and Rrs. For deter-
mining collocation between in situ and satellite data records
all measurements acquired on the same day were used, as L3
data used in this study do not preserve the time information.
Then, similarly to Zibordi et al. (2012), the median values are
extracted from a 3×3 box centred on the in situ measurement
coordinates only in the presence of at least five valid values
and a coefficient of variation smaller than 20 %. Bailey and
Werdell (2006) use a narrow time window for determining
coincidence (i.e. no more than ±3 h); Fig. S1 in the Supple-
ment presents the percent difference between satellite and in
situ Rrs for time windows ranging between ±1 and ±8 h,

assuming 10:00 am UTC as the satellite overpass time. The
range of variability of the relative difference is always within
1 %, confirming recent results from Barnes et al. (2019).

The uncertainty associated with the in situ data is due to
several factors, e.g. sea conditions and operator ability, which
in turn can introduce several contamination factors; hence,
here we consider satellite and in situ observations to both be
affected by uncertainties (Loew et al., 2017). Thus, for the
matchup analysis, a type-2 regression (also called orthogonal
regression) is implemented here (Laws and Archie, 1981).
The statistical parameters for the assessment of satellite ver-
sus in situ data are listed in Table 2. For log-normally dis-
tributed variables (such as Chl and Kd490) both datasets are
log-transformed prior to computing the slope (S), the inter-
cept (I ), and the determination coefficient. A good match be-
tween the two observations is achieved when S is close to 1
and I is close to zero. The RMSD is the average distance of
a data point from the fitted line, measured perpendicular to
the regression line. RMSD and bias have the same units as
the data from which they are derived.

3 Results and discussion

This section provides the validation analysis for the oper-
ational NRT–DT retrievals of Rrs and Chl with the multi-
sensor merging approach. The NRT–DT products (multi-
products) are available in the CMEMS catalogue as a rolling
archive spanning 2 years, prior to which REP products are
available instead. As already mentioned, since most of the in
situ data used for the validation analyses were collected ear-
lier than 2017 (2 years ago at the time of writing), we used the
NRT–DT production chain described in Sect. 2.2 to process
the entire satellite data archive, hence generating a consistent
DT dataset. The validation of the REP products based on the
CCIv3 is also included for comparison.

3.1 Temporal trend

In this context and with the general aim of identifying any
temporal dependence of the computed statistics, the analy-
sis was made comparing the satellite products with space–
time-collocated in situ measurements for each campaign sep-
arately and for the whole dataset. No significant temporal
behaviour emerged from the analysis (results not shown),
highlighting the fact that both in situ and satellite data are
homogeneous in time and well calibrated. Similar results
were recently obtained at global scale by Sathyendranath et
al. (2017).

3.2 Matchup – Rrs single sensors, multi-sensor

Figure 7 shows the relative difference between satellite and
MedBiOp Rrs spectra. Satellite Rrs values at all available
bands for each sensor are compared with the same in situ
Rrs bands (Table 1). In general, the Rrs in the blue bands
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Figure 6. (a) Algorithm for chlorophyll retrieval over the Mediterranean Sea. The maximum band ratio (MBR) is shown on the x axis; it is
the log10 ratio between the maximum value among the three bands in the blue (443, 490, and 510 nm) and the one in the green part of the light
spectrum (555 nm). Red dots (N = 509) are the in situ bio-optical data (MedBiOp, whose location is shown in Fig. 1) used to compute the
operational algorithm (black line). As a means of comparison the global algorithm (OC4v6; https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/,
last access: 7 February 2019) functional form is also superimposed (turquoise line). (b) Algorithm for the retrieval of the diffuse attenuation
coefficient, Kd490, over both the Mediterranean Sea (black line) and the global ocean (turquoise line). The global algorithm is the SeaWiFS
(https://oceancolor.gsfc.nasa.gov/atbd/kd_490/, last access: 7 February 2019). Red dots (N = 366) are the in situ measurements over the
Mediterranean Sea. Kd490 is the sum of Kbio and the attenuation due to pure seawater (0.0166; Mueller, 2000).

(443 and 490 nm) performs better than those at 412 nm or
those in the green region (510 and 555 nm). As mentioned
above, SeaWiFS, MODIS Aqua, and VIIRS are all processed
with the l2gen processor, so it is not surprising that these
three sensors display a common spectral behaviour with re-
spect to in situ observations. On the other hand, MERIS is
the only one exhibiting a positive difference with respect to
in situ observations for the 412 and 443 bands. This is likely
due to the different processing (performed by ESA) for the
L1 to L2 processing of MERIS (see Sect. 2.2 for details).
Apart from the 670 nm band (RPD of 76 %), SeaWiFS per-
forms generally better than the other sensors, thus support-
ing the choice as a reference sensor for the blue–green spec-
tral range. All other satellite data never exceed 15 % relative
difference when compared with in situ observations at basin
scale (Tables S2–S7). A noticeable feature presented in Fig. 7
is the wide variability of the computed statistics (given by the
standard deviation bars) highlighting the fact that the satellite
data presented here do not substantially differ from the in situ
observations. Table 3 shows the full statistics for the Multi-
Rrs product.

One of the main reasons for merging data from different
sensors is to enhance the domain coverage by reducing the
influence of both cloud coverage and generally flagged or
masked pixels as well as the out-of-satellite-swath areas; in
all cases the use of a multi-sensor approach increases the
probability of valid clear-sky observations. Figure 8 shows

Figure 7. Relative difference between satellite and MedBiOp Rrs
spectra for MODIS Aqua (yellow), NPP-VIIRS (magenta), Sea-
WiFS (red), MERIS (green), OC-CCI (blue), and the multi-sensor
product developed and described in this work (black). Vertical bars
represent 1 standard deviation from the average RPD value. Target
wavelengths are marked with vertical dotted lines.

the time series of the percent basin coverage for four sin-
gle sensors (SeaWiFS, MERIS, MODIS Aqua, and VIIRS)
and the Multi product. The number of clear-sky pixels for
the Multi product is on average larger than that of the single
sensors by as much as 40 % (Fig. 8), with minimum impact
during winter and maximum at summertime. The difference
between periods of maxima and minima somehow reflects
the cloud cover influence over the multi-sensor product, with
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Table 2. Metrics used to compare the estimated (satellite-based) dataset XE to a reference (measured in situ) dataset XM. A more compre-
hensive table of metrics is provided in the Supplement (Table S1). In the units column, G stands for geophysical and refers to sr−1, m−1, or
mg m−3 when the statistics are associated with Rrs, Kd, or Chl, respectively.
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Table 3. Statistics associated with the Multi-Rrs product (sr−1) computed over the MedBiOp dataset. The same statistics associated with all
products shown in Fig. 7 are provided in the Supplement (Tables S2 to S7).

Rrs Slope Intercept r2 RMSD Bias RPD APD N

412 0.99 −0.0006 0.77 0.0015 −0.00060 −7 18 272
443 0.86 0.0007 0.73 0.0013 −0.00023 1 15 272
490 0.65 0.0015 0.55 0.0013 −0.00047 −5 13 272
510 0.65 0.0009 0.57 0.0013 −0.00060 −11 18 272
555 0.68 0.0005 0.71 0.0012 −0.00027 −6 16 272
670 1.19 −0.0001 0.91 0.0002 −0.00002 −3 35 197

the wintertime being characterized by both cloud cover and
out-of-satellite swath, while the summer periods are mostly
affected by out-of-satellite-swath masked areas. Moreover,
the coverage is higher in the period 2002–2011 when SeaW-
iFS (until 2010), MODIS Aqua, and MERIS were operating
simultaneously. Despite the loss in 2010 of SeaWiFS with
its very wide swath, in all of 2011 the gain (turquoise line
in Fig. 8) does not decrease substantially. After the loss of
MERIS in 2012 the gain in the percent basin coverage dra-
matically decreases. Thus, the basin coverage depends on the
number of available sensors but also on the relationships of
the orbital parameters among the various OC missions.

The results in Fig. 7 are representative of the performances
of the various satellite observations (both single sensors and

multi-sensors) against the in situ measurements that were
widely collected over the basin in the past 20 years: the
MedBiOp dataset. Similarly, Fig. 9 shows the comparison of
the two multi-sensor time series (Multi product and CCIv3)
against three in situ datasets: the basin-scale dataset (Med-
BiOp) and two fixed-location datasets (Sect. 2.1), one of
which is coastal (AAOT). In general, one could expect the
mismatch between satellite and in situ observations to be
larger (in relative terms) at the extreme bands of the spec-
trum, i.e. at 412 and 670 nm, in the first case because of
the spectral distance from the NIR bands used for the atmo-
spheric correction and in the second because of the gener-
ally very low Rrs values that pose a challenge for both the
in situ and satellite determination of the Rrs at this band.
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Figure 8. Time series of the number of pixels for each satellite sensor as a percent with respect to the basin total coverage. For the sake of
readability, each line represents the result of the 30-day running median time series. The turquoise line is the basin coverage increase that is
gained with the Multi product with respect to the maximum coverage from the single sensors.

Here, the difference between satellite and in situ Rrs obser-
vations at these extreme bands is of the same order of mag-
nitude as the blue–green part of the spectrum when observed
in the open ocean (MedBiOp and BOUSSOLE) but not in
the coastal domain (AAOT). CCIv3 and Multi-Rrs present
a generally good agreement, with differences between these
two products and the in situ data being smaller than 5 %;
this low difference is likely due to the two source datasets
derived from two different NASA reprocessings, R2014 and
R2018, and partially to the use of POLYMER for the MODIS
Aqua processing in the CCI chain. At 412 nm, and to a lesser
extent at 443 nm, this difference is more pronounced (more
than 5 %) because the impact of the R2018 is larger at these
bands. An even more evident difference (larger than 10 %) is
seen at 670 nm; here, the impact of R2018 should be less im-
portant than in the blue bands. One important difference be-
tween the Multi product and CCIv3 is that the Multi product
is not bias-corrected over SeaWiFS at this band (Sect. 2.2.2);
since SeaWiFS performances at this band are not as good as
at the other bands it is reasonable to assume that this might be
the cause of the observed discrepancy, further supporting the
choice of not using SeaWiFS to bias-correct the other sen-
sors in this band. Another important feature in Fig. 9 is the
general difference in satellite performance (both the Multi
product and CCIv3) in coastal and open waters.

Table 4 shows the number of matchups for each band of
the Multi product and CCIv3 in correspondence to the three
in situ datasets. Two aspects emerge: one linked to the dif-
ference between the Multi product and CCIv3 and the other
between the 670 nm band and the other bands. As mentioned
earlier, it is reasonable to assume that the different source
data (R2018.0 for the Multi product and R2014.0 for CCIv3)
are responsible for the differences in spatial coverage and
hence in the number of matchups. Moreover, it should be
mentioned that MODIS Aqua used in the multi-processing
chain derives from NASA R2018.0, while it derives from the
POLYMER atmospheric correction scheme for CCIv3. As
for the differences between the 670 nm band and the other
bands, the very noisy spatial patterns present in the daily im-
ages of the Rrs at 670 nm very often result, at the scale of the

Figure 9. Relative difference between the Multi product and CCIv3
satellite observations and in situ measurements (MedBiOp in red,
AAOT in green, and BOUSSOLE in blue). The number of matchups
used from each dataset is summarized in Table 3. Target wave-
lengths are marked with vertical dotted lines. As a reference the
two red lines correspond to the black and blue lines in Fig. 7 for the
Multi product and CCIv3, respectively.

matchup pixels, in the coefficient of variation exceeding the
20 % threshold (Sect. 2.3).

Overall, despite their absolute differences, the two multi-
sensor satellite products show a similar level of accuracy,
which suggests that the multi-processor is also suitable for
the REP processing chain. This would provide the two ben-
efits of reducing the number of upstream data providers and
giving the NRT–DT and REP products full compatibility.

3.3 Matchup – Chl

Figure 10 shows the matchups for the L3 Chl product for
both processing modes, REP (derived from the CCIv3 Rrs)
and NRT–DT (derived from the multi-chain described in this
study). To facilitate the comparison between the two satel-
lite products, the matchup dataset includes only the points
for which both satellite data are available. Both products are
regularly distributed around the line of best agreement for
the entire Chl range, although for in situ values larger than
0.3 mg m−3 there is a noticeable dispersion increase. Table 5
shows the statistics of the four datasets plotted in Fig. 10. To
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Table 4. Number of matchups used to compute the statistics presented in Fig. 9.

In situ Satellite Bands (nm)

412 443 490 510 555 670

MedBiOp
Multi product 272 272 272 272 272 197
CCIv3 262 262 262 262 262 223

AAOT
Multi product 1794 1794 1794 1794 1794 1301
CCIv3 1753 1753 1753 1753 1753 1504

BOUSSOLE
Multi product 961 961 961 961 961 780
CCIv3 882 882 882 882 882 780

Figure 10. Satellite (y axis) versus in situ (MedBiOp) Chl concen-
tration. Satellite Chl is the REP (derived by the application of the
MedOC4.2018 to the Rrs derived from the CCIv3 processor, black)
and NRT–DT (derived from the multi-processing, red). Green dots
and blue crosses are the REP and NRT–DT for matchups on the pe-
riod in which VIIRS and MODIS coexist (REPAV and MultiAV).
Statistics associated with the matchup comparison are shown in Ta-
ble 4.

assess the uncertainties in the multi-Chl currently distributed
on the CMEMS portal, the analysis was performed on the
period in which VIIRS and MODIS coexist, i.e. January
2012 onwards. Despite the different number of matchups (44
vs. 710) and different Chl ranges (∼ 0.04–2 vs. ∼ 0.007–9),
statistics associated with the full time series are totally com-
parable with those obtained with the most recent data only
(2012 to present), as denoted by the AV (MODIS Aqua and
VIIRS) subscript in both Fig. 10 and Table 5.

To further assess the level of accuracy associated with
the Chl retrieval from the multi-mission merged approach
presented in this study, we compared with the results at
global scale reported in the Climate Assessment Report,
CAR (CCI, 2017). Differently than here, in the CAR, the

Chl log-transformation was used to compute all the statis-
tics, not only those associated with the linear fit (slope, inter-
cept, and determination coefficient; Sect. 2.3). Therefore, for
this analysis, we recomputed all the statistics in Table 5 ac-
cordingly (Table S10). The in situ data used to compute the
CAR statistics are much more numerous (14 582; Table S10).
Nonetheless, results for the proposed regional algorithms as
well as for CCI at global and Mediterranean scales show a
generally good agreement in terms of the determination co-
efficient, RMSD, CRMSD, and the slope of the linear fit. The
difference in the intercept only reflects the difference in the
two dataset ranges of variability, with the global set being
wider and characterized by a larger modal value (centred over
∼ 1 mg m−3; Fig. 8 in CAR) than the MedBiOp (Fig. 10).

3.4 Matchup – Kd490

Figure 11a shows the validation result of the satellite-derived
Kd490 with respect to the in situ Kd490 obtained from
the BGC-Argo float dataset (Organelli et al., 2016), whose
space–time distribution is shown in Fig. 11c. As a matter
of comparison, both algorithms shown in Sect. 2.2.3 and in
Fig. 6b are presented. MedKd performs better than the global
algorithm as also highlighted by their matchup statistics (Ta-
ble S9), from which it appears that the regional algorithm
presents lower biases (both absolute and percent) than the
global. Similarly to the global, the MedKd algorithm over-
estimates in situ values larger than 0.1 m−1, probably due to
the lower representativeness of the MedBiOp dataset used
to derive the algorithm in this range of variability (Figs. 6b
and 11b). Furthermore, the global algorithm shows a clear
overestimation at the lower end of the range of variability
with respect to the in situ data, as well as to the regional al-
gorithm, as shown by the two lines of best fit (slopes are 0.86
and 1 for the global and the MedKd, respectively; Table S9).
In contrast, the MedKd algorithm performs well at low val-
ues.

A similar analysis from Organelli et al. (2017) shows that
satellite data overestimate the BGC-Argo-derived Kd490 for
values below 0.1 m−1 (their Fig. 11). Here, we show that
this still holds when the global algorithm is used, but that
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Table 5. Statistics about the Chl (mg m−3) matchup datasets described in Fig. 10. The first two rows refer to the comparison of the two
satellite multi-sensor products with the entire MedBiOp Chl dataset, while the last two refer to the statistics associated with matchups on the
period in which VIIRS and MODIS coexist (REPAV and MultiAV). A more comprehensive table of metrics is provided in the Supplement
(Table S8).

Product Slope Intercept r2 RMSD Bias RPD APD N

REP 0.737 −0.306 0.75 0.411 −0.093 7 47 710
Multi product 0.752 −0.309 0.74 0.427 −0.098 3 47 710
REPAV 1.052 −0.108 0.57 0.207 −0.064 −18 43 44
MultiAV 1.184 −0.047 0.50 0.271 −0.057 −17 48 44

Figure 11. Satellite Kd validation with the BGC-Argo float dataset (Organelli et al., 2016). Panel (a) shows the in situ Kd (x axis) versus the
satellite-derived Kd obtained with the MedKd.2018 (grey dots) and the global algorithm (turquoise dots), respectively, as shown in Fig. 6b.
The two best-fit lines are also superimposed. The normalized frequency distribution of the two in situ Kd490 measurements (MedBiOp in
red and the BGC-Argo in blue) is shown in panel (b). The space–time distribution of the matchups is shown in panel (c). Relevant statistics
are available in the Supplement (Table S9).

the MedKd algorithm corrects for this overestimation. This
analysis, performed over a fully independent dataset, justi-
fies and supports the choice of using the MedKd algorithm
for the operational chain in lieu of the global.

4 Conclusions

This work presented the latest achievements in the opera-
tional processing chain for the ocean colour data stream for
the Mediterranean Sea in the context of the European Coper-
nicus Marine Environment Monitoring Service. The develop-
ment of the multi-sensor merged product builds on the pre-
vious version of this chain, which was focused on the par-
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allel processing of single sensors (SeaWiFS, MODIS, and
MERIS; Volpe et al., 2012). The introduction of an oper-
ational multi-sensor merged product aims to meet the op-
erational oceanography intrinsic requirement of “one ques-
tion, one answer”. Three main steps were implemented: band
shifting, inter-sensor bias correction, and sensor merging.
The band shifting is implemented exactly as in Mélin and
Sclep (2015), while the implementation of the inter-sensor
bias correction differs from the OC-CCI technique (CCI,
2016b) in the temporal and spatial aggregation scales. The
sensor merging shown in this work is based on the use of
the climatology as input to the smoothing procedure as de-
scribed in Volpe et al. (2018). The output of this process-
ing chain is the Rrs spectrum that constitutes the input to
all algorithms used to derive the various geophysical prod-
ucts. The Rrs computed with the multi-sensor merging ap-
proach shows good agreement when compared with in situ
observations not only with the basin-scale MedBiOp dataset
but also with the two fixed-location AAOT and BOUSSOLE
time series. As the accuracy of the L3 DT data presented in
this study also depends on the sensor calibration of the L2
data used in the NRT–DT processing chain, the L3 opera-
tional products might become degraded for newer data if the
calibration of the sensors starts diverging from the R2018
parameters. Moreover, this work presents an updated version
of the empirical algorithms for Chl and Kd retrievals for the
Mediterranean Sea based on the extended MedBiOp dataset.
The comparison with the in situ observations yields good re-
sults when applied to both the Rrs derived from the CCIv3
processor and those derived from the multi-sensor merged
processing shown here. This suggests the opportunity to use
the proposed multi-sensor processing chain in the REP con-
text as well.
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