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In this study, we report on the performance of satellite-based photosynthetically available radiation (PAR) algorithms
used in published oceanic primary production models. The performance of these algorithms was evaluated using
buoy observations under clear and cloudy skies, and for the particular case of low sun angles typically encountered
at high latitudes or at moderate latitudes in winter. The PARmodels consisted of (i) the standard one from the NASA-
Ocean Biology Processing Group (OBPG), (ii) the Gregg and Carder (GC) semi-analytical clear-sky model, and (iii)
look-up-tables based on the Santa Barbara DISORT atmospheric radiative transfer (SBDART) model. Various com-
binations of atmospheric inputs, empirical cloud corrections, and semi-analytical irradiance models yielded a total of
13 (11 + 2 developed in this study) different PAR products, which were compared with in situmeasurements collected
at high frequency (15 min) at a buoy site in the Mediterranean Sea (the “BOUée pour l’acquiSition d’une Série
Optique à Long termE,” or, “BOUSSOLE” site). An objective ranking method applied to the algorithm results in-
dicated that seven PAR products out of 13 were well in agreement with the in situ measurements. Specifically, the
OBPG method showed the best overall performance with a root mean square difference (RMSD) (bias) of 19.7%
(6.6%) and 10% (6.3%) followed by the look-up-table method with a RMSD (bias) of 25.5% (6.8%) and 9.6%
(2.6%) at daily and monthly scales, respectively. Among the four methods based on clear-sky PAR
empirically corrected for cloud cover, the Dobson and Smith method consistently underestimated daily PAR while
the Budyko formulation overestimated daily PAR. Empirically cloud-corrected methods using cloud fraction (CF)
performed better under quasi-clear skies (CF < 0.3) with an RMSD (bias) of 9.7%–14.8% (3.6%–11.3%) than under
partially clear to cloudy skies (0.3 < CF < 0.7) with 16.1%–21.2% (−2.2%–8.8%). Under complete overcast con-
ditions (CF > 0.7), however, all methods showed larger RMSD differences (biases) ranging between 32% and 80.6%
(−54.5% − 8.7%). Finally, three methods tested for low sun elevations revealed systematic overestimation, and one
method showed a systematic underestimation of daily PAR, with relative RMSDs as large as 50% under all sky
conditions. Under partially clear to overcast conditions all the methods underestimated PAR. Model uncertainties
predominantly depend on which cloud products were used. © 2018 Optical Society of America

OCIS codes: (010.0010) Atmospheric and oceanic optics; (010.4450) Oceanic optics; (280.0280) Remote sensing and sensors.

https://doi.org/10.1364/AO.57.003088

1. INTRODUCTION

Marine primary production is a key process to understanding
the carbon cycle in the ocean, from the transfer of energy to
high trophic levels, to the export to the deep ocean. Satellite

observations of ocean color provide a unique opportunity to
derive phytoplankton primary productivity at synoptic scales.
The main variables used in satellite-based primary production
models are chlorophyll-a concentration, diffuse vertical light
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attenuation, and incident photosynthetically available radia-
tion (PAR).

PAR is the solar energy available for plant photosynthesis,
and is defined as the radiation in the visible part of the electro-
magnetic spectrum (400–700 nm). PAR is expressed either in
flux of photons (μmol photons m−2 s−1), or in energy (Wm−2),
and constitutes 38% of the extraterrestrial incoming solar irra-
diance [1]. In the ocean, PAR partly controls the phytoplankton
growth, upper ocean physics, and to some extent the compo-
sition and evolution of marine ecosystems [2,3]. Estimating
PAR reaching the Earth’s ocean surface is a key step in remote-
sensing-based primary production models [4,5], and in ecosys-
tem models [6]. PAR plays a key role in the understanding of
phytoplankton dynamics, the magnitude of oceanic primary
production, and the biogeochemical pump [7]. Several satellite-
based primary production models use PAR at daily [8–12] and
monthly [13,14] scales obtained from in situ, satellite measure-
ments or radiative transfer simulations. Consequently, much of
our understanding of oceanic production hinges on the quan-
tification of solar irradiance reaching the sea surface. Therefore,
it is important to accurately determine the magnitude and tem-
poral distribution of PAR at the sea surface [15–18].

PAR can be measured in situ or estimated from a model fed
with auxiliary data [19,20]. PAR measurements over the world
oceans are scarce, so methods were developed to estimate PAR
from satellite remote sensing observations [21,22]. Remote-
sensing-based methods use information on the atmosphere,
such as cloud optical thickness, aerosols optical thickness, and
cloud fraction (CF), which are subsequently used to force a
radiative transfer model (or to search in a look-up table derived
from radiative transfer simulations) to obtain PAR values at
Earth’s surface. Look-up-table (LUT) methods based on radi-
ative transfer models (RTMs) are computationally efficient.
One advantage of the satellite-based method is that spatially
continuous PAR estimates can be obtained, whereas it has the
limitation to provide only instantaneous PAR values collec-
ted at the time of the satellite overpass. Some assumptions are

required to derive the daily mean values from the instantaneous
values, which introduce uncertainties [21,23]. Another limita-
tion lies in the spatial and temporal resolution of some ancillary
satellite products used to estimate PAR (e.g., International
Satellite Cloud Climatology Project, ISCCP, and Moderate
Resolution Imaging Spectroradiometer, MODIS products) [24].
Some estimation methods are based on the extinction of PAR
due to atmospheric conditions [25]. Most of these methods only
describe clear-sky conditions, but a few schemes do account for
the effects of clouds on PAR [26].

There are many factors affecting the attenuation of PAR
through the atmosphere, including aerosol loads and their
optical properties (i.e., optical depth; Ångström exponent),
clouds, gaseous absorption, and sun elevation. Several radiative
transfer and semi-analytical models exist to compute accurately
irradiance under clear skies for given atmospheric conditions
[27,28]. Of all the variables, however, sun zenith angle (θ0)
has the most extreme effect on surface irradiance along with
cloud cover. In a clear sky, θ0 affects not only the magnitude
of PAR, but also the ratio between direct and diffuse compo-
nents of the downward irradiance, which in turn impacts the
transfer of PAR through the air-sea interface. Under cloudy
conditions with optically thick clouds, θ0 has no impact on
the angular distribution of the light field due to i) the strong
attenuation of the light fields by clouds, and ii) the increased
scattering causing the light field to become nearly isotropic
[29–31]. If we are to accurately model marine primary produc-
tion at large temporal and spatial scales, the impact of clouds on
the PAR reaching the sea surface should be accounted for prop-
erly. Several atmospheric [32–34] and coupled atmosphere-
ocean [35] RTMs have been developed to account for the effect
of clouds on surface irradiance, which in turn have been used in
primary production models [13,36–39]. Several regional- and
global-scale PAR products have been generated based on the
methods discussed above, but most of these products have not
been validated using surface observations [24]. Therefore, a sys-
tematic evaluation and comparison of these products using

Table 1. Description of PAR Estimation Methods from Different Sources and Inputs Under All Sky Conditionsa

# PAR Model Cloud-Correction Scheme Input Data Method Name

Parameters Used

O3 τcl CF

1 OBPG
Frouin et al.

N/A MODIS-A Ltoa OBPG ✓

2 SB
Ricchiazzi et al.

None, as in Bélanger et al. [18];
Laliberté et al. [24]

MODIS-A SB_M ✓ ✓ ✓
3 ISCCP SB_IS ✓ ✓ ✓
4 DS, for Dobson and Smith [40] MODIS-A SB_DS_M ✓ ✓ ✓
5 ISCCP SB_DS_IS ✓ ✓ ✓
6 B, for Budyko [41] MODIS-A SB_B_M ✓ ✓ ✓
7 ISCCP SB_B_IS ✓ ✓ ✓
8 NC (new method) MODIS-A SB_NC_M ✓ ✓ ✓
9 ISCCP SB_NC_IS ✓ ✓ ✓
10 GC

Gregg and Carder
DS, for Dobson and Smith [40] MODIS-A GC_DS_M ✓ ✓

11 ISCCP GC_DS_IS ✓ ✓
12 B, for Budyko [41] MODIS-A GC_B_M ✓ ✓
13 ISCCP GC_B_IS ✓ ✓

aThe acronyms correspond to the following: OBGP, Ocean Biology Processing Group; SB, SBDART radiative transfer model; GC, Greg and Carder model; IS,
ISCCP dataset; M, MODIS-Aqua dataset; DS, Dobson and Smith cloud attenuation formulation; B, Budyko cloud attenuation formulation as modified by Morel and
Andre [39]; NC, new cloud attenuation formulation (this study).
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time series of surface measurements are greatly needed, espe-
cially for peculiar cases, such as cloudy conditions and high θ0.

In this study, we assess the performance of 13 methods
(Table 1) that retrieve PAR and are implemented in various
primary production models [42], with a focus on cloudy skies
and low sun elevations. The assessment was made against a
large data set of multispectral irradiance data from a mooring
located 55 km off the coast of France in the Mediterranean Sea
(7°54’E, 43°22’N) as part of the BOUSSOLE project [43]
(Fig. 1), which includes a broad range of solar zenith angles
and cloud covers.

2. MATERIAL AND METHODS

The 13 methods for estimating PAR using different combina-
tions of models, cloud-correction schemes, and satellite prod-
ucts are given in Table 1. We describe them in detail in the
following sections.

A. Three Radiative Models
1. NASA-OBPG
The NASA-OBPG method [44] is based on an energy budget
approach, and estimates daily PAR from ocean color satellite
observations. In brief, the energy reaching the surface is the
initial flux that was neither reflected nor absorbed by the
atmosphere-surface system. The PAR model uses plane-parallel
theory, and assumes that the cloud and atmospheric compo-
nents can be decoupled with no absorption by clouds in the
visible region of the solar spectrum [23]. PAR is computed as
the product of a clear-sky component of the atmosphere above
the cloud layer and a cloud transmittance given by 1—A, where
A is the planetary albedo in the visible (i.e., surface + cloud
albedo). The planetary albedo is derived from the measured
TOA radiances in the visible bands. Note that the original
method gives a direct estimate of PAR�0−� [23], but the
OBPG PAR product is PAR�0�� following

PARcolud�0�� �
PARcloud�0−�

1 − AS
� PARclear�0��

� �1 − A��1 − AS�−1�1 − SaA�−1, (1)

where PARclear�0�� is the PAR reaching the surface in the ab-
sence of clouds, PARcloud�0�� is the PAR reaching the surface
under clouds, PARcloud�0−� is the PAR just below the sea sur-
face under clouds, As is the ocean surface albedo, and Sa is the
spherical albedo, which is stored in pre-computed LUTs [45].

2. Gregg and Carder [30]
Gregg and Carder (GC) is a clear-sky maritime spectral-irradiance
model [30]. The model has fine spectral resolution of 1 nm in
the 350–700 nm range.

Global downwelling solar irradiance �Ed total�λ, 0��� above
the sea surface consists of the sum of two components, the spec-
tral direct �Eddir�λ, 0��� and diffuse downwelling irradiances
�Eddif �λ, 0���, which is expressed by

Ed total�λ, 0�� � Eddir�λ, 0�� � Eddif �λ, 0��, (2)

where λ is the wavelength (nm), and 0� represents the level
just above the sea surface. The direct downwelling irradiance
(Wm−2 nm−1) reaching the sea surface is determined through
the primary attenuation processes by the spectral transmittance
components in a cloud-free maritime atmosphere for Rayleigh
scattering, aerosol scattering and absorption, as well as ozone,
oxygen, and water vapor absorptions, using the mean extrater-
restrial irradiance corrected for earth-sun distance and orbital
eccentricity. The diffuse downwelling irradiance is calculated
from the two spectral diffuse components induced by Rayleigh:
scattering, and aerosol scattering, and is given in detail by
Gregg and Carder [30]. The spectral resolution is 5 nm from
400 to 700 nm, and input parameters are as given in Table 2.
The total spectral irradiance, Ed total�λ, 0��, is integrated from
400 to 700 nm to yield PAR�0��. The sun angle, θ0, is esti-
mated using the day of year, time, latitude, and longitude of the
study site.

3. Santa Barbara DIscrete Ordinate Radiative Transfer
(DISORT) Atmospheric Radiative Transfer (SB) [34]
Santa Barbara DISORT Atmospheric Radiative Transfer
(SBDART) is an atmospheric radiative transfer model devel-
oped by Ricchiazzi et al. [34]. It relies on low-resolution band
models (20 cm−1 resolution) developed for the LOWTRAN 7
model [46]; this transmission model is represented by
three-term exponential fits [47]. The equation of transfer is in-
tegrated using the well-known discrete ordinate method
embodied in DISORT [48]. The discrete ordinate method pro-
vides a numerically stable algorithm to solve the equations of
plane-parallel radiative transfer in a vertically inhomogeneous
atmosphere. The intensity of both scattered and thermally
emitted radiation can be computed at different heights and di-
rections. SBDART is configured to allow up to 65 atmospheric
layers and 40 radiation streams (40 zenith angles and 40 azi-
muthal modes). SBDART contains an internal database of
cloud parameters (scattering efficiency, the single scattering
albedo, and the asymmetry factor) for clouds composed of
spherical water or ice droplets. The model contains pre-
computed scattering parameters for particle size distributions
with an effective radius in the range of 2–128 μm. Also,

Fig. 1. Location of the BOUSSOLE site (black star). Background
data corresponds to daily PAR for the month of June 2008, source
MODIS L3 (Frouin and Chertok [23] algorithm).
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it allows for the analysis of radiative transfer through cirrus
clouds, with the scattering parameters for spherical ice grains
of a single-size distribution. Up to five layers of clouds are
allowed, each specified by four parameters: altitude in integral
kilometers, effective droplet radius, optical depth, and phase
(if ice, then the effective radius is set to 106 μm). The
model computes irradiance at the sea surface using the discrete
ordinate method to solve the radiative transfer equation assu-
ming a plane-parallel atmosphere for clear- and cloudy-sky
conditions.

In this study, following Bélanger et al. [18], and Laliberté
et al. [24], SBDART was used to generate look-up-tables of
the direct and diffuse components of the incident spectral
downward irradiance at the sea surface, Eddir�λ, 0�� and
Eddif �λ, 0��, in the visible at 61 different wavelengths (i.e.,
every 5 nm from 400 to 700 nm), hereafter named EdLUT,
with a total of 61 × 19 × 10 × 8 � 92720 elements correspond-
ing to 19 values of θ0 from 0° to 90° at every 5°, 10 values of
total ozone concentration (O3) from 100 to 550 in Dobson
Units (DU) at 50 DU intervals, and 8 values of cloud optical
thickness (τcl). Default fixed cloud properties were selected for
(i) the altitude of the cloud layer (5 km), (ii) the cloud droplet
effective radius (8 μm, for water clouds), and (iii) the phase
function model of Henyey–Greenstein (a function of asymme-
try factor; g � 0.8) as inputs to SBDART for the generation of
LUT (Table 3).

The irradiances Eddir�λ, 0�� and Eddif �λ, 0�� are summed
up and then spectrally integrated from 400 to 700 nm to obtain
PAR�0��. The sun angle, θ0 was estimated using the day of
year, time, latitude, and longitude of the study site.

B. Cloud-Correction Schemes
1. Dobson and Smith Cloud Formulation [40]
The approach of DS [40], which was tuned to produce the
observed monthly climatology of the mean surface irradiance,
is given by

PARcloud�0�� � PARclear�0�� × �1 − 0.53 × �CF�0.5�, (3)

where PARclear is the clear-sky PAR and CF is the daily mean
cloud fraction. This cloud scheme is referred to as DS in model
combinations.

2. Budyko (B) [41]
Morel and André [39] modified the approach of Budyko [41]
for shortwave solar radiation to compute PAR�0�� under clouds
by assuming that the reduction within the spectral domain
400–700 nm due to clouds is only 75% of that of the entire
solar spectrum (Eq. 4 of [39]). The PAR�0�� is computed as

PARcloud�0�� � PARclear�0�� × �1 − 0.29 × �CF� CF2��:
(4)

This cloud scheme is referred to as B in model combinations.

3. New Cloud-Correction Schemes
Two new cloud-correction formulations were developed in the
present study using daily PAR collected at the BOUSSOLE site
(PARin situ), modeled daily clear-sky PAR (PARclear), and sat-
ellite-derived CF values from either MODIS-Aqua (referred
to as SB_NC_M) or ISCCP (referred to as SB_NC_IS) (see
Table 1). We adopted SB to calculate PARclear values, since
no significant differences were observed using either SB or
GC in deriving the relationships. The coefficients for the
new parameterization scheme were obtained from the best
fit of PARin situ∕PARclear against CF values from MODIS
and ISCCP [Figs. 7(b) and 7(c)] according to

PARcloud�0��� PARclear�0��× �1−0.16× �MCF�exp�MCF��,
(5)

PARcloud�0�� � PARclear�0�� × �1 − 0.2 × �ICF� exp�ICF��,
(6)

where MCF and ICF are CF values from MODIS and ISCCP,
respectively. The exponential function exhibited the best
fit due to the non-linear distribution of CF values with
PARin situ∕PARclear ratio.

C. Atmospheric Parameters from Remote Sensing
The ozone content, cloud fraction, and cloud optical thickness
at the location of the BOUSSOLE mooring were derived from
ISCCP Surface Radiative Flux and MODIS atmospheric data,
which are described below.

1. ISCCP Dataset (IS)
Atmospheric parameters required to estimate the incident irra-
diance were obtained from the ISCCP for the BOUSSOLE lo-
cation. ISCCP provides global distribution of clouds and their
diurnal (3 h time resolution), as well as seasonal and interannual

Table 2. Meteorological and Sun Variables Represented
in the Gregg and Carder Model

Parameter Value

Pressure (P), Pa 101325
Air-mass type (AM) 1 (maritime aerosol)
Relative humidity (RH), % 80
Precipitable water (WV), cm 1
Mean wind speed (WM), ms−1 4
Instantaneous wind speed (WS) ms−1 6
Visibility (V ), km 23
Total ozone (O3), DU 300
Sun zenith angle (θo) 20°–89°

Table 3. Input Parameters Used in SBDART Model to
Generate LUT

Parameter Values

Sun zenith angle (θo) 0° to 90° at every 5°
Ozone column (O3) 100–550, at every 50 Dobson

units (DU)
Cloud optical thickness
(τcl)

0, 1, 2, 4, 8, 16, 32 and 64

Marine aerosol optical thickness equal to 0.1 at 550 nm
Mid-latitude summer
atmosphere

defining standard vertical profiles
of pressure, temperature and water vapor
(McClatchey et al.) [49]

Altitude of the cloud
layer (km)

5

Effective radius of cloud
droplet (water) μm

8

Phase function model Henyey–Greenstein parameterization [34]
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variations from the analysis of satellite radiances. CF is esti-
mated by counting the number of satellite pixels about 5 km
across that are determined to be cloudy, and dividing by total
number of pixels in a 280 km region (https://isccp.giss.nasa.
gov/cloudtypes.html). Cloud properties (i.e., cloud optical
thickness and cloud fraction) were retrieved from the surface
radiative flux (SRF) data downloaded from the ISCCP website
(http://isccp.giss.nasa.gov/products/products.html) [28]. The
SRF dataset also includes satellite-derived, column-integrated
ozone observations from the total ozone mapping spectrometer
(TOMS). Global maps of ISCCP products are distributed on a
280 km resolution equal area grid at every 3 h from 1983 to
2009. The 2003 to 2009 archive was used in the present study.

2. MODIS Atmospheric Dataset (M)
The daily, 1-degree resolution (∼77 km, along parallel, but
∼111 km along meridian), Level-3 MODIS O3, CF, and τcl
properties were obtained from the global gridded MODIS-
Aqua atmosphere products (MYD08 D3). The daily L3 CF
product is derived from L2 MODIS granules acquired over
a 24 h interval within the 1°-resolution pixel. In brief, each
granule provides a value of 1 (cloudy) or 0 (not cloudy),
and the CF is computed as the sum of all cloudy pixels divided
by the sum of cloudy and clear pixels (see, MODIS ATBD for
details: http://modis-atmos.gsfc.nasa.gov/_docs/L3_ATBD_
C6.pdf ). The data were used as inputs to retrieve PAR from the
LUT method. In addition to the MYD08 D3 products used as
inputs to derive PAR at the BOUSSOLE site, we downloaded
the MODIS L2 PAR and CF products at 1-km resolution from
an entire year (2008), n � 363 to assess the impact of satellite-
derived CF spatial resolution on the retrieval of PAR at the
BOUSSOLE site (http://www.globcolour.info/products_
description.html). For the spatial analysis, we assumed that
cloud conditions in any year would be representative of all years
of MODIS observations. The CF and PAR variables were
derived at 4, 8, 16, 32, 64, 80 (∼1° resolution), 140, and
280 km (ISCCP, 280 km), from the 1-km resolution for
3 types of cloud cover, namely, CF < 30% (n � 151), 30 <
CF < 70% (n � 30), and 70% <CF �n � 182�. The impact
of spatial scales was quantified as the absolute relative difference
δPAR � 1

N

PN
i�1

jPAR�1 km�i−PAR�X �i j
PAR�1 km�i

× 100, where X correspond

s to 4-km, 8-km, 16-km, 32-km, 64-km, 80-km, 140-km,
and 280-km resolution.

D. Definition of PAR Products
The above detailed models, cloud-correction schemes, and the
remote-sensing datasets were combined to produce 13 PAR�0��
products as described below.

1. OBPG Operational PAR Product
Daily Level 3 PAR data products from the Moderate Imaging
Spectroradiometer (MODIS-Aqua) were downloaded from the
NASA Ocean Biology Processing Group (OBPG) (http://
oceancolor.gsfc.nasa.gov). Daily PAR values are derived using
the algorithm of Frouin et al. [44]. The product is gridded
at 4.64 km.

Daily PAR values (i.e., 24-h integration) were extracted for
the BOUSSOLE’s pixel (43.22° N, 7.54° E) from 2003 to
2009, and were used for comparison with in situ data. The

MODIS-Aqua PAR time series is a widely used dataset, which
has shown good agreement when compared with in situ
data [27].

2. LUT Method
The SBDART-based LUT method [18] described above was
used to compute incident spectral downwelling irradiance at
the sea surface, Ed �0�, λ, t�, using pre-computed LUT with
θo, O3, and τcl as inputs and obtained from either ISCCP
or MODIS-Aqua. They are referred to hereafter as SB_M,
and, SB_IS methods, respectively. The PAR estimateusing this
method is described below.

The CF was needed to calculate the irradiance for a given
ocean pixel. The CF along with O3 was derived from ISCCP-
SRF and MODIS–Atmosphere products for the BOUSSOLE
pixel. Values of Ed �0�, λ, t�, were computed for the
BOUSSOLE pixel every 3 h with the ISCCP-SRF dataset,
but a single daily value was obtained from the MODIS-
Atmosphere dataset. Clear-sky values were obtained when CF
was equal to 0. When CF was greater than 0, we applied the
following equation:

Epixel
d �λ, 0�� � E cloud

d �λ, 0�� × CF� E clear
d �λ, 0�� × �1 − CF�,

(7)

where E cloud
d �λ, 0�� and E clear

d �λ, 0�� were obtained from Ed
LUT using the actual value of CF (for the given τcl), and
CF � 0, respectively. Values of total irradiances were spectrally
integrated from 400 to 700 nm to get PAR�0��. Thus, two
SBDART PAR products, namely, SB_M, and SB_IS, were
estimated for our time series.

3. Clear-Sky Models with CF Corrections
Clear-sky PAR�0�� obtained from the two clear-sky models
(GC and SB) can be corrected for CF using the formulations
of DS and B. A combination of the two models (GC and SB)
and two cloud corrections (DS and B), yield four products
(GC_DS, GC_B, SB_DS and SB_B). Since two sources of
CF were used (ISCCP and MODIS), a total of eight models
were tested (see Table 1).

DS and B were used to estimate PARcloud products using
the daily mean CF inputs from ISCCP-SRF and MODIS-
Atmosphere data. The daily mean CF value from ISCCP is
the average of the 8 CF values (3 h resolution) available for
a given day.

Table 1 summarizes the 10 combinations of clear-sky mod-
els, CF correction approaches, and atmospheric inputs that
yielded 13 PAR�0�� products: OBPG, SB_M, SB_IS,
GC_DS_M, GC_DS_IS, GC_B_M, GC_B_IS, SB_DS_M,
SB_DS_IS, SB_B_M and SB_B_IS, and SB_NC_M and
SB_NC_IS.

E. In Situ PAR Data for Validation
Surface downward solar irradiance data were obtained from the
BOUSSOLE project [43]. The BOUSSOLE buoy provides a
long-term archive, starting in 2003, of in situ radiometric and
bio-optical quantities in support of satellite ocean-color calibra-
tion and validation activities.

The above-water downward spectral irradiance (Es) was
measured during 1 min acquisition sequences every 15 min
from dawn to dusk, with a set of Satlantic OCI-200 radiometers
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equipped with seven 10-nm-wide spectral bands (412 or 555,
443, 490, 510, 560, 665 or 670, and 683 nm). Instruments
were factory calibrated (NIST traceable) and swapped about
every six months. The Es data processing and quality control
were described in Antoine et al. [43]. Measurements from
September 2003 to October 2009 were used in this study,
which corresponds to the overlap between the MODIS and
ISCCP archives.

Irradiances in μW cm−2 nm−1 were converted into μmol
photons m−2 s−1 for all wavelengths, linearly interpolated
between successive bands from 412 (or 443) to 683 nm, or
linearly extrapolated towards 400 and 700 nm, and finally in-
tegrated over the PAR spectral range.

An independent Satlantic PAR sensor (400–700 nm) was
also deployed on the buoy starting in September 2007. It
was used to validate the PAR calculated from Es measurements,
and especially to estimate the uncertainties associated with the
integration of Ed at seven wavelengths to derive PAR. The
median absolute percentage deviation from the in situ value
was found to be of 3.4% (maximum of about 7% from radi-
ative transfer simulations) over 37,778 pairs of observations
under varying solar zenith angles and sky conditions recorded
between September 2007 and December 2012.

Following the spectral integration over the PAR spectrum,
temporal integration was performed at a 15-min time step to
retrieve daily PAR in mol photons m−2 d−1. For the selected
period of September 2003 to October 2009, only quality-
controlled irradiance spectra with all seven wavelengths avail-
able over the entire course of the day were selected for the
comparison. This step resulted in a total of 773 high-quality,
daily, in situ data points. After a matchup exercise with
MODIS-A, the data were further reduced to a final set of
729 daily in situ measurements. For data consistency purposes,
days where either in situ or satellite data were missing were
discarded when determining the monthly mean values. This
resulted in 33 monthly average points. Further, we used a sub-
set of 686 instantaneous irradiance measurements (in μ mol
photons m−2 s−1) collected at 06 h and 18 h local time, which
correspond to θ0 > 70° to investigate the performance of
these models in low-angle illumination conditions. Given that
the sensor used a cosine collector, the uncertainties asso-
ciated with high-solar zenith angles increase from about 3%
(0 < θo < 60°) to up to 10% (θo > 60°) as per manufacturer
specifications. In addition, collectors of the sensors which, after
6-months of deployment, showed a large drift of the calibration
coefficients (or, which were suspect of degradation based on a
visual inspection) were systematically replaced before the final
calibration.

The performance assessment for the 13 methods was carried
out at daily and monthly scales, which are the most common
temporal binning used by current satellite-based primary
production models. Except for OBPG [44] and SB_IS [24]
methods, the PAR algorithms used in satellite-based primary
productivity models [42,50] have not been validated against
in situ observations. Two semi-empirical formulations to esti-
mate PAR corrected for cloud cover have already been com-
pared with each other, however the performances of these
methods were not assessed against in situ data [51].

3. STATISTICAL ANALYSIS AND METHODS
RANKING

Common univariate statistical tests [52–54] were applied to
test the performance of the methods.

The Pearson’s correlation coefficient r is calculated accord-
ing to

r �
P�XM − X̄ M � · �X E − X̄ E �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP �XM − X̄ M �2 · �X E − X̄ E �2

p , (8)

where X is the variable. The superscript E denotes the esti-
mated value of X (from the model), and the superscript M de-
notes the measured value (from BOUSSOLE buoy). X̄ denotes
the mean value of the variable. The Pearson correlation coef-
ficient is a measure of the strength of the linear relationship
between two independent variables.

The Root Mean Square Difference (RMSD) (Ψ), which de-
scribes the uncertainty in the estimated values relative to the
measured ones, was estimated according to

Ψ �
�
1

N

XN
i�1

�X E
i − XM

i �2
�1∕2

: (9)

The center-pattern (or unbiased) RMSD (Δ) was calculated
according to

Δ �
 
1

N

XN
i�1

f�X E
i − X̄ E

i � − �XM
i − X̄ M

i �g2
!

1∕2

: (10)

The bias between model and measurement was estimated
according to

Ω � 1

N

XN
i�1

�X E
i − XM

i �: (11)

Note that Δ, Ψ, and Ω are related through Δ2 � Ψ2 �Ω2.
Finally, the slope (S) and intercept (I ) of the linear re-

gression between estimated and in situ PAR�0�� values were
used to indicate the goodness of comparison of model versus
in situ data:

X E � XM · S � I : (12)

The residual data of the simple linear regression model was
calculated as the difference between the measured (XM ) and
estimated (X E ) values:

Residual � XM − X E : (13)

These statistical indicators were used to rank the methods
by combining them in a quantitative statistical methodology,
as in Brewin et al. [55]. For each model, the correlation coeffi-
cient (r), root mean square difference (Ψ), bias (Ω) and centre-
pattern Root Mean Square Difference (Δ), are transformed into
points as indicated below.

For the Pearson correlation coefficient (r), a test was per-
formed to determine if the r-value for a given method was sta-
tistically higher or lower than the mean r-value of all methods.
The Z score method was used to determine if two correlation
coefficients were statistically different from one another [56].
In brief, if we had (r1, n1) and (r2, n2), the r-values, and the
number of samples for methods 1 and 2, respectively, the
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coefficients z1 and z2 [Eqs. (14) and (15), respectively] were
computed to derive the Z score according to Eq. (16):

z1 � 0.5 log
�
1� r1
1 − r1

�
, (14)

z2 � 0.5 log
�
1� r2
1 − r2

�
, (15)

zscore �
z1 − z2��

1
n1−3

	� �1∕�n1 − 3��


1∕2 : (16)

By assuming normal distribution, Z score was converted into
p-value. Using a two-tailed test the r-values were considered
statistically different if the p-value was <0.05. Further, the
mean r-value was estimated from all the model r-values used
in the study. The r-value of each model was then compared
with the mean value of all the models, to determine if the
r-value of a given model was statistically lower, identical, or
higher than the average value for all models.

The differences and similarities between models forΨ andΔ
were determined from the 95% confidence interval. It was as-
sumed that the models had statistically similar differences if the
95% confidence intervals overlapped. Points were attributed to
each model depending on Ψ and Δ values (as well as 95% con-
fidence intervals) compared to mean values.

ForΩ, the mean value of bias for all models was determined.
It should be noted that the tests on the bias was applied to the
modulus of Ω.

The scoring for the slope (S) and intercept (I ) were given
depending on the proximity to the average values for all models.

The points for each model were given for r, Ψ, Δ, Ω, S, and
I following:

• 0 point was attributed if r is statistically lower than the
mean r for all models, Ψ, Δ, and Ω are statistically higher for a
model than the mean Ψ, Δ, and Ω for all models (95% con-
fidence intervals did not overlap), and S is lower and I is higher
for a model than the mean S and I for all models,

• 1 point was attributed if r is statistically identical to the
mean r for all modes,Ψ,Δ, andΩ are statistically identical for a
model to the meanΨ,Δ, andΩ for all models (95% confidence
intervals overlap with mean values), and S and I are identical
for a model with mean S and I for all models,

• 2 points were attributed if r is statistically higher than the
mean r for all models andΨ, Δ, and Ω are statistically lower for
a model than the mean Ψ, Δ, and Ω for all models (95% con-
fidence intervals did not overlap), and S is higher and I is lower
for a model than the mean S and I for all models.

To rank the performance of each method, all points were
summed over each statistical test. The total score of each
method was normalized by the average score of all methods.
A score greater than one indicates an above average method
performance, a score of one indicates that the method perfor-
mance was average, and a score lower than one indicates that
the method was performing poorer than average [55]. Note that
the bias and RMSD were also expressed in relative unit (%)
(i.e., relative bias as, %bias � 1

N

PN
i�1

�yi−xi�
xi

× 100%, and the
equivalent for RMSD) when assessing the impact of spatial
and temporal resolution on daily PAR computation.

4. RESULTS

A. Methods Ranking and Performance for Daily and
Monthly PAR Estimation
Figure 2 shows scatter plots of modeled daily PAR versus in situ
daily PAR for the 11 products. It is clear from the scatter plots that
all the methods perform reasonably well at estimating daily
PAR�0�� when compared with in situ data (r > 0.9,
Table 4). A visual comparison of the scatter plots and the results
from the points classification score (bar chart in Fig. 2), reveals
that the points classification appears to be working consistently,
such that the methods showing larger discrepancies and bias be-
tween estimated and in situ data in the scatter plots (i.e.,
SB_DS_M, SB_DS_IS, GC_DS_M, and GC_DS_IS) had a be-
low average score, while methods showing a closer relationship
between modeled and in situ data had an above-average score
(i.e., OBPG, SB_M, SB_IS, SB_B_M, SB_B_IS, and
GC_B_M). GC_B_IS yielded a score equal to one. Methods
SB_DS_M, SB_DS_IS, GC_DS_M, and GC_DS_IS showed
the poorest performance.

MODIS-A products based on the NASA-OBPG algorithm
showed the highest score, while SB_IS, SB_M based on the
LUT approach with ISCCP and MODIS-Atmosphere inputs,
and SB and GC combined with B cloud correction using
ISCCP and MODIS inputs, showed similar scores.
GC_B_IS showed slightly lower score than the above-
mentioned models. All clear-sky models using DS exhibited
below average scores (SB_DS_M, SB_DS_IS, GC_DS_M,
and GC_DS_IS).

Table 4 provides the statistics for the 11 methods at daily
and monthly scales and for two new cloud parameterization
methods at daily scale. At daily scale, the RMSD varied from

PAR(0+) Daily

Fig. 2. Top panel: score of the 11 models used to derive daily mean
PAR�0�� (see Table 4 for model details). Bottom panels: modeled
versus in situ PAR�0�� for the 11 models. The solid line corresponds
to 1:1 line and the dashed line corresponds to the linear fit of modeled
versus in situ data.
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4.9 to 8.9 mol photons m−2 d−1, which corresponds to relative
RMSD of 20 to more than 40%. The OBPG method showed
the lowest relative RMSD (20%), while methods SB_M and
SB_IS showed relative differences around 26%, and SB_B_M,
GC_B_M showed differences around 31%. SB_B_IS, GC_B_IS,
SB_DS_M and GC_DS_M showed relative RMS differences
around 36%, and SB_DS_IS and GC_DS_IS showed relative
RMS differences equal or greater than 40%. Methods OBPG,
SB_M and SB_IS exhibited positive biases. Regarding simple
cloud formulation, B-based methods (SB_B_M, SB_B_IS,
GC_B_M, and GC_B_IS) exhibited positive biases, and
D-based methods (SB_DS_M, SB_DS_IS, GC_DS_M, and
GC_DS_IS) exhibited negative biases.

At monthly scale, relative RMSD was reduced to 8.9%–
12.1% (i.e., RMSD of 2.9 to 3.6 mol photons m−2 d−1) for
OBPG, SB_M, SB_IS, SB_B_M, SB_B_IS, GC_B_M, and
GC_B_IS and exhibited positive biases. D-based methods
(SB_DS_M, SB_DS_IS, GC_DS_M, and GC_DS_IS)
showed an average of 13.4%–16.6% relative RMSD (i.e.,
RMSD of 5.9 to 6.9 mol photons m−2 d−1) and increased neg-
ative biases compared to daily scale.

Overall, the statistics improved when data were binned
monthly (Fig. 3). In agreement with results at daily scale, re-
sults at monthly scale showed that methods based on LUT
(SB_M, SB_IS), SB_B_M, GC_B_M obtained the highest
scores along with OBPG, and SB_B_IS, GC_B_IS showed
a score equal to one. The clear-sky model (GC) combined with
B showed good performance independently of the CF input
(GC_B_M, GC_B_IS). Clear negative bias was obtained when
DS cloud correction was used with ISCCP and MODIS CF
(SB_DS_M, SB_DS_IS, GC_DS_M, and GC_DS_IS).

B. Method Performance Under Quasi-Clear Sky,
Partly Cloudy, and Overcast Conditions
From the 11 initial methods, we selected the seven best per-
forming methods (OBPG, SB_M, SB_IS, SB_B_M, SB_B_IS,
GC_B_M, GC_B_IS) based on their high scores in the objec-
tive classification (Table 4) to test their performance under
different cloud conditions (we excluded methods that used
the DS cloud classification, namely SB_DS_M, SB_DS_IS,
GC_DS_M, and GC_DS_IS). The impact of clouds and cloud
products on the performance of the seven methods was assessed
for three ranges of CF: quasi-clear sky (0.1 < CF < 0.3), par-
tially clear to partially cloudy (0.3 < CF < 0.7), and overcast
(CF > 0.7) conditions. Results from the classification (Fig. 4)
show that the performance of all of the three models and four
cloud attenuation methods depends more on the cloud cover
than the cloud product (i.e., MODIS versus ISCCP).

Table 5 shows the statistics of the method performance
under different sky conditions. Under quasi-clear sky condi-
tions, the relative RMSD varied from 9.7% to 14.8% (RMSD
of 4.3 to 6 mol photons m−2 d−1). Based on the point classifi-
cation, the OBPG method showed the best performance under

Table 4. Pearson’s Correlation Coefficient (r ), RMSD (Ψ ), CMRSD (Δ), Bias (Ω), Slope (S), and Intercept (I ) Estimated
Between Each Method Estimate and In situ for Daily and Monthly PAR Valuesa

Model

Daily Monthly

r Ψ (%) Δ Ω (%) S I r Ψ (%) Δ Ω (%) S I

OBPG 0.96 4.91 (19.7%) 4.79 1.17 (6.6%) 0.98 1.71 0.98 3.61 (9.9%) 3.04 1.94 (6.3%) 0.98 2.49
SB_M 0.93 5.73 (25.5%) 6.73 0.16 (6.8%) 1.02 −0.67 0.98 3.28 (9.6%) 3.22 0.63 (2.6%) 1 0.29
SB_IS 0.93 5.96 (27.3%) 5.96 0.61 (11.9%) 1 0.35 0.98 3.63 (9.8%) 3.37 1.34 (3.9%) 1 0.88
SB_DS_M 0.92 8.1 (35.4%) 8.1 −4.29 (−3.7%) 0.82 1.13 0.98 5.02 (14.4%) 3.3 −3.78 (−10.3%) 086 0.68
SB_DS_IS 0.92 8.9 (40%) 8.9 −5.43 (−3.6%) 0.72 3.03 0.97 6.49 (16.6%) 0.19 −4.96 (−13%) 0.79 1.73
SB_B_M 0.92 6.23 (30.8%) 6.83 0.95 (10.7%) 0.96 0.05 0.98 2.89 (9%) 2.87 0.32 (0%) 0.98 0.088
SB_B_IS 0.93 6.44 (35.9%) 6.44 0.56 (19.3%) 0.89 2.82 0.97 3.21 (9.9%) 3.21 0.034 (2.7%) 0.94 1.76
GC_DS_M 0.91 8.02 (36.7%) 7.14 −3.64 (−8.7%) 0.78 2.92 0.98 6.2 (13.4%) 4.22 −4.54 (−6.9%) 0.77 2.48
GC_DS_IS 0.92 8.93 (41.3%) 7.6 −4.69 (−8.9%) 0.68 5 0.97 6.88 (16.1%) 4.95 −4.78 (−9.1%) 0.73 3.67
GC_B_M 0.92 6.36 (32.5%) 6.85 0.25 (15.9%) 0.92 1.95 0.98 3.29 (8.9%) 2.62 2 (3.7%) 0.97 2.75
GC_B_IS 0.92 6.78 (36.8%) 6.77 0.28 (24.8%) 0.84 5.11 0.97 3.75 (12.1%) 3.26 1.81 (6.7%) 0.91 4.34
SB_NC_M 0.95 5.87 (36.8%) 5.87 1.66 (27.3%) 0.97 2.4 0.98 3.87 (11.4%) 2.93 2.53 (9.9%) 1 1.31
SB_NC_IS 0.94 6.28 (43.1%) 6.28 2.25 (35.1%) 0.92 4.61 0.98 4.41 (14.5%) 3.1 3.13 (13.1%) 1 2.67

aRMSD, CMRSD and Bias are in units of mol photons m−2 d−1. The % values refer to relative RMSD and Bias.

Fig. 3. Top panel: score of the 11 models used to derive monthly
mean PAR�0�� (see Table 4 for model details). Bottom panels: mod-
eled versus in situ PAR�0�� for the eleven models. The solid line cor-
responds to 1:1 line, and the dashed-line corresponds to the linear fit
of modeled versus in situ.
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quasi-clear skies (4.3 mol photons m−2 d−1 or 9.7%). The
SB_M, SB_IS, and SB_B_M methods exhibited average per-
formance, SB_B_IS showed a score equal to one, and GC_B_M
and GC_B_IS exhibited below average performance.

Under partially clear to cloudy skies (0.3 < CF < 0.7)
SB_M and SB_B_M methods underestimated PAR�0�� and
all the other methods overestimated PAR�0��. Once again,
the OBPG method exhibited the best performance, SB_IS ex-
hibited the second-best performance, and SB_M, SB_B_M,

GC_B_M, and GC_B_IS showed below-average performance
and very similar statistics. SB_B_IS showed the least perfor-
mance. In general, the methods are less biased but more scat-
tered (lower r and higher RMSD) relative to the quasi-clear sky
conditions. The LUT and GC approaches (SB_B_M,
SB_B_IS, GC_B_M, and GC_B_IS) combined with B showed
consistent below-average scores. Under overcast conditions
(CF > 0.7), the OBPG method with an RMSD of 5.67 mol
photons m−2 d−1 (relative RMSD of 32%) and a positive bias

Table 5. Pearson’s Correlation Coefficient (r ), RMSD (Ψ ), CMRSD (Δ), Bias (Ω), Slope (S), and Intercept (I ) Computed
between Each Method Estimate and in situ towards the Study of Impact of Clouds and Cloud Products on PAR Values
Under Different Sky Conditionsa

Model

Sky Conditions

CF < 0.3 0.3 < CF < 0.7 CF > 0.7

r Ψ (%) Δ Ω (%) S I r Ψ (%) Δ Ω (%) S I r Ψ (%) Δ Ω (%) S I

OBPG 0.97 4.32
(9.7%)

4.25 0.77
(3.6%)

0.95 2.64 0.94 5.72
(16.1%)

5.18 2.43
(9.2%)

0.96 3.08 0.94 5.67
(32%)

5.62 0.77
(8.7%)

1 0.47

SB_M 0.95 6.02
(13%)

5.44 2.58
(7.2%)

1 0.34 0.91 6.42
(16.3%)

6.35 −0.9
(−1.5%)

0.94 0.73 0.88 7.54
(42.7%)

7.29 −1.9
(−10.1%)

0.86 1.24

SB_IS 0.97 5.4
(14%)

4.75 2.56
(8.5%)

1 0.14 0.94 5.6
(20.1%)

5.51 1.03
(8.5%)

0.98 1.58 0.91 6.79
(47.9%)

6.55 −1.8
(−18.7%)

0.84 1.82

SB_B_M 0.97 5.17
(11.5%)

4.5 2.54
(7.8%)

1 0.42 0.94 5.18
(13.9%)

4.98 −1.5
(−2.2%)

0.88 3.03 0.9 8.73
(57.3%)

7.52 −4.4
(−20.5%)

0.6 4.45

SB_B_IS 0.96 5.06
(13.7%)

4.69 1.89
(7.4%)

1 0.69 0.94 5.59
(20.1%)

5.5 1
(4.64%)

0.86 3.55 0.9 8.23
(74.1%)

7.78 −2.7
(−45%)

0.6 6.51

GC_B_M 0.96 5.39
(12.4%)

4.38 3.13
(9.9%)

1 2.53 0.94 5.38
(14.1%)

5.27 1.08
(2.1%)

0.81 4.6 0.9 9.05
(61.6%)

8.2 −3.83
(−28.3%)

0.51 6.24

GC_B_IS 0.96 5.02
(14.8%)

4.38 2.44
(11.3%)

0.97 3.24 0.94 6.76
(21.2%)

6.75 0.47
(8.8%)

0.76 7.21 0.9 8.69
80.6%)

8.59 −21.35
(−54.5%)

0.51 8.4

aRMSD, CMRSD and Bias are in units of in mol photons m−2 d−1. The % values refer to the relative RMSD and Bias.

(a) (b) (c)

(d)

Fig. 4. Scores of the selected models used to derive daily mean PAR�0�� under (a) quasi-clear (CF < 0.3), (b) partially cloudy (0.3 < CF < 0.7),
and (c) overcast (CF > 0.7) conditions (see Table 5 for model details). (d) Modeled versus in situ PAR�0�� for the selected models (see text for
details). The solid line corresponds to the 1:1 line, and the dashed line corresponds to the linear fit of modeled versus in situ data.
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of 0.8 mol photons m−2 d−1 (8.7%), exhibited the best perfor-
mance. SB_IS exhibited the second-best performance, with
RMSD of 6.79 mol photons m−2 d−1 (relative RMSD of
47.9%), followed by SB_M with RMSD of 7.54 mol photons
m−2 d−1 (relative RMSD of 42.7%). For the four other models
(SB_B_M, SB_B_IS, GC_B_M, and GC_B_IS), the relative
RMSD varied from 57% to 80% for partly cloudy to fully over-
cast conditions (Table 5). The increase in model uncertainties
was associated with differences in cloud products and increasing
cloud cover. Under all sky conditions the NASA-OBPG
method showed the best performance.

Differences in spatial and temporal resolution between
MODIS and ISCCP emerged in the frequency distribution
histogram of the cloud fraction (Fig. 5). First, one observes that
ISCCP data showed a nearly uniform frequency distribution.
In contrast, MODIS CF exhibited a bias towards clear
(CF � 0) and overcast (CF � 1) sky conditions. The
MODIS-Aqua CF was obtained from only one or two sensor
overpasses per day at 45°N (1-km resolution average over 1°
providing 1 value per day), whereas the ISCCP CF values were
integrated from different meteorological sensors binned at 3 h
resolution over a 280-km grid (with up to 8 values averaged
over a day to get a daily CF). The differences in terms of tem-
poral and spatial resolutions between the two satellite products
had an impact on the retrieval of daily CF and consequently on
PAR estimation.

C. Spatial and Temporal Mismatch
Both MODIS and ISCCP datasets contain their own limitation
in terms of temporal and spatial scales, independently of un-
certainties associated with the retrieval of CF, τcl. Assuming
that MODIS 1-km resolution CF and PAR products represent
the true values at the BOUSSOLE site, we computed the ab-
solute relative PAR difference between the reference (i.e.,
MODIS 1-km resolution), and PAR, estimated at 4, 8, 16,
32, 80, 140, and 280 km resolution, to assess possible system-
atic bias in PAR due to spatial scales [Fig. 6(a), Table 6].

The cloud conditions were divided into three cases, namely,
CF < 0.3, 0.3 < CF < 0.7, and CF > 0.7. The mean abso-
lute relative difference in daily PAR for CF < 0.3 remained
lower than 10% for both MODIS (∼80 km), and ISCCP
(280 km) spatial resolution, with values of 6.3%, and 9.2%,
respectively. For 0.3 < CF < 0.7, the mean absolute relative
difference was lower than the previous case with values of

3.6%, and 4.7% for MODIS and ISCCP dataset, respectively.
In overcast skies (CF > 0.7), the mean absolute relative differ-
ence increased to 31	 55% for MODIS spatial resolution, and
to 46	 100% for ISCCP spatial resolution. The ISCCP
280 km resolution exhibited systematic larger difference than
the MODIS 1° resolution.

The impact of temporal integration on daily PAR was as-
sessed by computing the difference between daily integrated
PAR at 15 min resolution with daily integrated PAR at,
30 min, 1 h, 3 h, and 24 h time steps for 61 days of data col-
lected at BOUSSOLE. For the single day measurement (i.e.,
MODIS 24 h single pass), we scaled the clear-sky, 15 min res-
olution PAR to the value at 13 h30, which corresponds roughly
to the time of the MODIS pass, from which we computed the
daily PAR using a 15 min time step [Fig. 6(b) and Table 6].

(a) (b)

Fig. 5. Frequency distribution of (a) MODIS and (b) ISCCP daily
meanCF values under quasi-clear (CF < 0.3), partial (0.3 < CF < 0.7)
and overcast (CF > 0.7) cloud conditions.

(a) (b)

Fig. 6. (a) Mean percentage difference between daily PAR at 1-km
resolution and PAR estimated 4-km, 8-km, 16-km, 32-km, 64-km,
80-km, 140-km, and 280-km resolution for the year 2008 under vary-
ing sky conditions. The black circles correspond to MODIS (∼77 km)
and ISCCP (280 km) spatial resolutions. The black, blue, and red
vertical bars represent the lower and upper limits of the mean error
for the three sky conditions (see text for details). (b) Mean percentage
difference between daily integrated PAR at 15 min time step and daily
integrated PAR at 30 min, 1 h, 3 h, 6 h, and 24 h time step for two
months of BOUSSOLE buoy data under all sky conditions. The black
circles correspond to ISCCP (3 h binning) and MODIS (24 h bin-
ning) temporal resolutions. The black vertical bars represent the lower
and upper limits of the mean error.

Table 6. Comparison of Mean Differences of Daily
Integrated PAR Modeled and Estimated Under Different
Spatial and Temporal Binning for MODIS (1°∼77 km; 24 h)
and ISCCP (2.5°∼280 km; 3 h)a

PAR
Mean Absolute Difference (%)

(Mean Difference (%))

CF < 0.3 0.3 < CF < 0.7 CF > 0.7

Difference Due to Spatial Mismatch

1 deg (∼77 km) 6.3	 7 3.6	 5 31	 55
−6.2	 14 (−2.4	 8) (17.2	 54)

280 Km 9.2	 11 4.7	 8 46	 100
(−9.2	 22) (−5	 7) (31.8	 96)

Difference Due to Temporal Mismatch

24 h 20	 25�3.3	 12�
3 h 10	 11�0.47	 32�

aThe values are given in relative units.
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During these 61 days, the daily PAR varied between 1.5 and
55 mol photons m−2 d−1, which attested to various sky con-
ditions, namely, 24 days with CF < 0.3, 13 days with
0.3 < CF < 0.7, and 24 days with 0.7 < CF, based on
MODIS cloud fraction values. The ISCCP 3 h integration time
step induced a 10% absolute relative difference when compared
to the 15 min integration time, whereas the single daily mea-
surement of MODIS induced a mean percentage error of 20%.
Similarly, the absolute relative differences (expressed in % and
referred to as δPAR), which expressed biases (without modulus
in the equation δPAR � 1

N

PN
i�1

�PAR�1 km�i−PAR�X �i�
PAR�1 km�i

× 100), showed
that the biases were all of the same sign under CF > 0.7,
both for spatial mismatch and under temporal mismatch, in
comparison to relative absolute differences. For CF < 0.3
and 0.3 < CF < 0.7, however, the sign of the biases was neg-
ative (the values of biases are given in brackets in Table 6).

D. New Cloud-Correction Parameterization
Comparison of the new cloud-correction parameterization with
the B and DS methods is shown in Fig. 7(a). As expected from
the results presented above (i.e., PAR underestimation under

cloudy conditions), the PAR attenuation by clouds was lower
(i.e., PAR values are higher) for a given value of CF with the
new parameterizations compared to B and DS.

The statistical performance of the methods is summarized in
Table 4. Method SB_NC_M showed the best performance
after OBPG with a higher r (0.95) and RMSD of 5.87 mol
photons m−2d−1. Evaluation of the daily PAR values against
in situ PAR provides relative RMSD (bias) values of 36.8%
(27.3%) for SB_NC_M [Fig. 7(d)], and, 43.1% (35.1%)
for SB_NC_IS [Fig. 7(e)], respectively. At monthly scale, the
relative RMSD values reduced to 11.4%, and 14.5%, for
SB_NS_M, and, SB_NC_IS, respectively. The better perfor-
mance of the new cloud-correction parameterizations (NC)
compared to DS and B methods can be attributed to the fact
that the new method was validated using the same dataset used
to develop it.

E. Instantaneous PAR Estimation Under Low Sun
Elevation
A total of 686 in situ instantaneous irradiances were used to
assess the performance of four models under low sun elevations,
a situation prevailing at high latitudes. Methods SB_IS,
SB_DS_IS, SB_B_IS, and SB_NC_IS were selected because
they allow estimations of instantaneous PAR. ISCCP CF was
used as input for this exercise because it provides updated cloud
properties every 3 h from 00 h to 24 h. Instantaneous irradi-
ances at 06 h and 18 h were used, corresponding to low sun
elevations in the range 0°–20° [corresponding to Solar Zenith
Angle (SZA) range 70°–90°] at the BOUSSOLE site.

Under all sky conditions the four methods performed rea-
sonably well (r > 0.85) at estimating the instantaneous irradi-
ances, but tended to show a large discrepancy with a mean
relative RMSD value of 50% or more (Fig. 8, Table 7). The
four methods show statistically similar performances. However,

(a)

(b) (c)

(d) (e)

Fig. 7. (a) Ratio PARcloud:PARclear as a function of CF for B (solid
red line), DS (solid blue line), and the new cloud-correction schemes
(dashed line for ISCCP and dotted line for MODIS datasets). Ratio
PARcloud:PARclear as a function of CF for (b) MODIS and (c) ISCCP.
The black solid line corresponds to the fitted relationships proposed
in this study. Modeled versus in situ PAR�0�� for the new cloud-
correction schemes for (d) MODIS and (e) ISCCP products. The solid
lines in (d) and (e) corresponds to 1:1 line and the dashed line cor-
respond to the linear fit of modeled versus in situ data.

Fig. 8. Modeled versus in situ instantaneous PAR�0�� for the four
methods (see Table 7 for model details). The solid line corresponds to
the 1:1 line, and the dashed-line corresponds to the linear regression of
modeled data versus in situ data.
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methods SB_IS, SB_B_IS, and SB_NC_IS show positive biases
with a slope close to 1, whereas SB_DS_IS exhibits negative
bias and a slope well below 1 (i.e., 0.82), similar to the results
obtained in daily and monthly comparisons.

The accuracy of the model estimates was also assessed under
different cloud conditions, in order to test the applicability of

the methods in regions with more persistent cloud covers
(results in Fig. 9 and Table 8). Under clear-sky conditions the
SB_B_IS method showed better performance with lower model
uncertainties (53.2 μmol photons m−2 s−1), compared to the
SB_IS (100 μmol photons m−2 s−1), SB_DS_IS (86.7 μmol
photons m−2 s−1), and SB_NC_IS (103 μmol photons m−2 s−1)
methods. Under partially cloudy and overcast conditions, the
SB_B_IS approach also performed better than the SB_IS and
SB_DS_IS methods. It is noteworthy that for CF > 0.3, all the
methods showed a negative bias.

The relationship between normalized residues [i.e.,
(Estimated-Measured)/Measured � 100], and θ0, τcl and CF
is shown in Fig. 10. For θ0>70°, the four methods showed
a tendency to underestimate PAR. It can be clearly observed
from Fig. 9, that the increase in PAR underestimation was

Table 7. Pearson’s Correlation Coefficient (r ), RMSD (Ψ ),
CMRSD (Δ), Bias (Ω), Slope (S), and Intercept (I )
Computed between Each Method Estimate and In Situ
Data Under All Sky Conditions for Low Sun Elevationsa

Model r Ψ (%) Δ Ω (%) S I

SB_IS 0.88 92.5 (55.1%) 91.91 11 (23.2%) 0.97 17.03
SB_DS_IS 0.86 92.4 (50.7%) 89.15 −24 (−6.4%) 0.82 16.07
SB_B_IS 0.87 94.7 (55.4%) 94.51 6 (21.5%) 0.95 17.33
SB_NC_IS 0.88 94.8 (57.2%) 93.7 14 (27%) 0.97 20.6

aRMSD, CMRSD and Bias are in units of in μmol photons m−2 s−1. The %
values refer to the relative RMSD and Bias.

(a)

(b)

(c)

Fig. 9. Modeled versus in situ instantaneous PAR�0�� for SB_IS,
SB_DS_IS, SB_B_IS and SB_NC_IS under (a) quasi-clear (CF < 0.3),
(b) partially cloudy (0.3 < CF < 0.7) and (c) overcast (CF > 0.7) con-
ditions (see Table 8 for details). The solid line corresponds to the 1:1
line and the dashed-line corresponds to the linear fit of modeled versus
in situ data.

Table 8. Pearson’s Correlation Coefficient (r ), RMSD (Ψ ), CMRSD (Δ), Bias (Ω), Slope (S), and Intercept (I ) Computed
Between Each Method Estimate and In Situ Data Under Different Sky Conditions for Low Sun Elevationsa

Model

Sky Conditions

CF < 0.3 0.3 < CF < 0.7 CF > 0.7

r Ψ (%) Δ Ω (%) S I r Ψ (%) Δ Ω (%) S I r Ψ (%) Δ Ω (%) S I

SB_IS 0.89 100.19
(44.5%)

94.37 33.64
(21.8%)

1 21.5 0.86 84.46
(64.8%)

83.86 −9.32
(−9.3%)

0.83 26.14 0.77 85.46
(65.3%)

84.61 −11.98
(−18.2%)

0.72 29.89

SB_DS_IS 0.89 86.75
(39%)

86.69 −3.21
(−6.8%)

0.9 22.02 0.85 100.61
(59.8%)

86.41 −51.53
(−40.3%)

0.64 25.93 0.74 93.01
(63.9%)

86.53 34.1
(−8.1%)

0.53 37.4

SB_B_IS 0.99 53.23
(44.9%)

34.57 40.48
(22.4%)

0.88 −1.31 0.89 59.9
(65.3%)

40.26 −44.35
(−29.2%)

0.77 7.55 0.86 34.57
(64.8%)

40.43 −16.19
(−9.6%)

0.76 19.94

SB_NC_IS 0.89 103.28
(45.2%)

95.8 38.29
(24.3%)

1 29.5 0.86 87.98
(68.9%)

87.9 −2.91
(−8.2%)

0.85 35.15 0.77 81.31
(65.4%)

81.3 −21.7
(−18%)

0.63 34.5

aRMSD, CMRSD and Bias are in units of in μ mol photons m−2 s−1. The % values refer to the relative RMSD and Bias.

(a) (b)

(c)

Fig. 10. Normalized residuals of the four methods (see Table 7 for
model details) as a function of (a) ISCCP τcl, (b) ISCCP CF, and
(c) θ0. Vertical dashed line in (c) corresponds to sun zenith angle
of 78.5°, and the solid black line corresponds to a percentage residual
equal to zero.
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pronounced under partially cloudy to overcast conditions. It
should be noted that 2490 instantaneous irradiances were used
to study the relationship between normalized residuals and θ0,
τcl, and CF, corresponding to SZA range 20°–90°.

5. DISCUSSION

A. Performance of PAR Estimation Methods Under
All Sky Conditions, Temporal and Spatial Mismatch
The consistent performance of the NASA-OBPG method in all
sky conditions (i.e., from clear to cloudy skies) can be partly
attributed to the high spatial resolution of the satellite pixel
(4.6 × 4.6 km), which better represents the atmospheric con-
ditions around the point of observation. Our sensitivity study
on spatial scales showed that for all sky conditions, the mean
absolute relative error (δPAR) remains below 5%. The good per-
formance of the OBPG method is explained by the energy
budget approach, which does not require knowing whether
a pixel is clear or cloudy, i.e., it avoids making some arbitrary
assumptions about cloudiness. The good performance of the
NASA-OBPG PAR model has also been reported in a recent
study [24] that used ship-based irradiance measurements col-
lected in the Canadian Arctic.

The relatively good performance (r > 0.9) of the LUT
methods using both ISCCP-SRF (relative RMSD ∼ 27%)
and MODIS (relative RMSD ∼ 25%) products likely results
from an accurate solution of the radiative transfer equation
and explicitly accounting for the effects of atmospheric condi-
tions (i.e., CF, τcl and O3) over the study region.

Both OBPG and LUTmethods, based on different radiative
transfer models and approaches, exhibited positive biases in all
sky conditions. In the case of OBPG, this positive bias may be
explained by (i) the single satellite pass near local noon, i.e.,
when cloudiness is generally reduced, (ii) a possible overestima-
tion of the clear-sky values, (iii) a small bias in the calculation of
spectrally integrated transmittance (of cloud/surface) functions,
and (iv) the correction of large scattering by molecules and
aerosols in the presence of clouds considering the decoupling
of clear atmosphere and the cloud-surface effects assuming that
the cloud-surface layer is located below the clear atmosphere
[57]. In the case of the LUT methods based on the RT model,
the positive biases could be attributed to the overestimation of
the radiation (especially in the diffuse part of shortwave) due to:
(i) the errors in the selection of the aerosol scattering param-
eters, (ii) neglecting the continuum absorption process at vis-
ible wavelengths, and (iii) the use of a constant atmospheric
transmission coefficient in the RT model simulations [34].
The results (Table 4) show that when PAR is integrated over
a month, the performance of both OBPG and LUT methods
improved in terms of RMSD, but the positive bias remained
unchanged [27]. In addition, one cannot exclude the possibility
that a bias in in situ measurements exists, which, in the pre-
sent study relied essentially on the calibration provided by
the manufacturer.

From Fig. 6 and Table 6 it can be observed that, in clear
(CF < 0.3) and cloudy skies (CF < 0.7), the temporal resolu-
tion induced higher uncertainties for both ISCCP and MODIS
CF than spatial resolution. The absolute δPAR values due to
spatial mismatch remains below 6.3% and 9.2%, while the

temporal mismatch reached 20%, and 10%, for MODIS single
pass, and ISCCP 3-h resolutions, respectively (Table 6). This
suggests that in clear skies and partially cloudy skies, the un-
certainties in PAR retrieval are driven by the temporal mis-
match between the in situ and satellite data. In overcast
conditions (CF > 0.7), the low spatial scales of MODIS (1°)
and ISCCP (280 km) datasets become a more important source
of uncertainties than the temporal mismatch with respective
absolute δPAR values of 31%, and 46%, respectively (Table 6).
These values are close to the relative RMSD values of both
LUT MODIS (42.7%) and LUT ISCCP (47.9%) under over-
cast conditions (Table 5). MODIS cloud products, despite a
lower temporal resolution than ISCCP cloud products, led
to better PAR estimations as given by their lower RMSD values
due to a better spatial resolution. Laliberté et al. [24] reported
large discrepancies between OBPG and LUT with ISCCP
models in the Arctic Ocean. The better performance of the
LUT method reported here, as compared to the performance
reported in Laliberté et al. [24] may be explained by
the accuracy of the ISCCP products, since cloud properties
above 60° latitude are solely derived using data from the polar-
orbiting satellites [57], whereas below that latitude, geostation-
ary satellites also contribute to the ISCCP dataset.

The model uncertainties were reduced when using the
monthly time scale, and the performance of the models was
significantly improved. This could be attributed to the com-
pensation of spatial scale discrepancies (satellite versus in situ
data) from daily to monthly values. A recent study emphasized
that accounting for statistical diurnal cloud variability increased
the scatter between estimated and measured PAR values on a
daily time scale, but reduced the bias and improved the agree-
ment between modeled and measured PAR on a monthly time
scale [57]. Negative and positive daily biases can also compen-
sate each other when integrated over an entire month.

The empirical formula [Eq. (4)] for cloud correction pro-
vides a simple approach to account for the impact of clouds
on daily and monthly PAR estimations. It proved to be success-
ful in primary production models when the clear-sky PAR has
been accurately estimated [13]. However, published empirical
parameterizations (DS and B) tend to underestimate PAR
under cloudy condition (i.e., overestimate the cloud attenuation)
(see below). In particular, DS formulation showed poor per-
formance when compared to the other approaches. This is ex-
plained by the mathematical formulation of the model (square
root), which results in a rapid decrease of PAR with increased
CF compared to other formulations [Fig. 7(a)].

B. Impact of Clouds and Cloud Products on PAR
Estimation
Clear-sky models coupled to B tended to underestimate PAR
as CF increased (Fig. 4 and Table 5). This became obvious
under high CF and high in situ irradiance (e.g., cloud cover
in spring and summer). However, B tended to overestimate
PAR at the lower range of in situ PAR values (<15 mol
photons m−2 d−1). This feature may be seasonal (PAR over-
estimation in winter and PAR underestimation in summer),
and perhaps related to cloud types, e.g., more frequent haze
or thin clouds in winter, which was not taken into account
by these models.
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The Morel and André [39] approach was derived from
Budyko’s formulation [41] for the shortwave radiation and
modified to compute PAR�0�� (400–700 nm). Budyko’s for-
mulation, developed using monthly mean cloud estimates as a
function of latitude and the CF, does not account for cloud
type and seasonal variations in solar elevations [40]. B formu-
lation performed better than DS, with a large underestimation
of PAR by DS in the high range of values. Differences between
DS and B in the fraction of PAR transmitted to the surface in
presence of clouds (i.e., PARcloud∕PARclear), were larger than
10% [Fig. 7(a)] when CF ranges from 0.05 to 0.7. The largest
difference, about 17.7%, occurred for CF equal to 0.3. For
CF > 0.8, both DS and B yielded similar PARcloud:PARclear

ratios. The consistency between B and NC parameterizations
emphasizes the reliability of empirical models to retrieve PAR at
the sea surface. The better results obtained by NC can be ex-
plained first by the fact that the parameterization was developed
using the same dataset as for validation, and second, by the use
of an exponential term in the formulation to simulate the rapid
decrease of the PARcloud:PARclear ratio with increasing CF. To
some extent, it is not surprising to see some simple parameter-
ization (e.g., NC) performing similarly to more advanced meth-
ods, such as LUT, generated by using the radiative transfer
model, since PAR at the sea surface becomes negligible for large
cloud optical thickness. For instance, for a cloud of 1-km thick-
ness with an optical thickness of 4.6, only 1% of the light
would reach the surface such that the CF becomes prevalent
over the optical thickness. The average cloud optical thickness
at the BOUSSOLE site is about 15 (source: https://giovanni.
gsfc.nasa.gov/giovanni for the period January 1st, 2003 to
December 31st 2016), which is well above 4.6.

We expected a better performance of empirical cloud cor-
rection using high spatial resolution CF data (i.e., 1° versus
280 km). Surprisingly, the RMSD were similar for both
MODIS-Aqua and ISCCP CF products, as well as the good-
ness of the fit (similar r and RMSD), despite the large differ-
ence in their spatial resolution (82 versus 280 km). The
sensitivity study carried out on the mismatch in spatial scales
revealed that the uncertainties increased with increasing cloud
fraction to reach almost 50% for CF > 0.7.

The OBPG and MODIS-based daily PAR estimates were
obtained from instantaneous PAR measurement collected from
a single daily pass. This implied that the cloud system remained
constant during the day. As a consequence, if the sky was clear
at the time of the MODIS-Aqua observation, PAR would be
overestimated if clouds were present at other times of the day.
Similarly, PAR would be underestimated when the sky is
cloudy during the satellite pass, but mostly clear during the rest
of the day. In addition to spatial resolution, some of the un-
certainties are likely due to a lack of information on diurnal
variability [23,27,44].

Unlike MODIS observations, the ISCCP dataset provides a
good representation of the diurnal variability of clouds at rel-
atively high temporal resolution. The low spatial resolution,
however, smoothens cloud variability (i.e., broken clouds
against continuous cover) such that at a given time, the buoy
might be under direct sunlight but the ISCCP observations will
yield a percentage of cloud cover. This explains some of the

variability observed when comparing the PAR derived using
the ISCCP cloud dataset and in situ measurements.

C. Impact of Low Sun Elevations on PAR Estimation
Low sun elevations (>70°) prevail during dawn and dusk in any
given location, during winter time at mid latitudes and most of
the year in polar regions, which makes the accurate estimation
of PAR challenging.

All methods based on LUT underestimated PAR when θ0
reached more than 78.5° (Fig. 10). This underestimation at low
sun elevations may have two origins. First, from a radiative
transfer modeling perspective, SBDART solves the radiative
transfer equation for a plan-parallel geometry and isotropic sur-
face-reflected radiation. These assumptions fail to account for
broken clouds in the atmosphere. For example, the direct com-
ponent of PAR may be very sensitive to partial clouds. In ad-
dition, large deviations from Lambertian reflection may occur
when very high specular reflection dominates the surface albedo
[34] thus, leading to uncertainties in determining surface reflec-
tance. This process would be more important under windy con-
ditions. Second, cloud optical thickness and cloud fraction
retrievals in the ISCCP product can be biased and have limi-
tations when the solar zenith angle exceeds 78.5° [58]. This
explains the scatter and deviations from the 1:1 line at lower
elevations in the four models tested (i.e., SB_IS, SB_DS_IS,
SB_B_IS and SB_NC_IS)). The ISCCP dataset assumes that
the cloud distribution was homogeneous in partially cloudy
pixels. Thus, horizontal cloud heterogeneities may result in
over or underestimation of the PAR�0�� depending on cloud
type, sensor resolution, and observing geometry. Retrieval of
cloud optical thickness with low spatial resolution leads to
underestimation, which results in overestimation of PAR
[59,60]. Some of the discrepancy between measured and mod-
eled values may be attributed to the cloud type, however, the
nature of our cloud datasets does not give us the opportunity to
investigate this further in the current study.

D. Methods Ranking
The methods ranking criteria used in our study helps quanti-
tative comparison between different methods. However, the
criteria itself may need to be considered carefully with changing
user requirements.

For instance, the baseline usage of average performance of all
methods to compare PAR product performance may be altered
by poorly performing methods (i.e., skewing model result dis-
tribution), making it difficult to discriminate between the
higher performing methods. In the present study, DS-based
cloud-correction methods showed very poor performance with
high Ψ, Δ, and high negative Ω, in comparison with other
methods under daily scales (see Fig. 2). This results in the min-
imal points to the methods SB_DS_M, SB_DS_IS, GC_DS_M,
and GC_DS_IS, and maximum points for all other methods.

However, when these four methods are excluded from the
analysis (Fig. 11), the OBPG remains the best performing
method, SB_M, SB_IS, SB_B_M, and SB_B_IS show average
performance with a score equal to 1, and other methods
show below-average performance. This demonstrates that the
method remained robust in our analysis. In general, one should
be cautious in using the average performance of all methods as a
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baseline towards comparing performance of the methods, since
it only indicates the relative performance of individual method
with respect to others, and not in absolute terms.

6. SUMMARY AND CONCLUSIONS

Reliable modeling and monitoring of marine primary produc-
tion require high accuracy PAR estimates. Here, an objective
classification was used to assess and rank methods to compute
PAR at daily and monthly scales based on their quantita-
tive performance derived from a set of univariate statistics.
Eleven PAR estimation methods were ranked by comparison
with in situ data collected at the BOUSSOLE site. Among these
11 methods (excluding two new methods), seven methods were
further selected to study the impact of clouds formulation (i.e.,
a simple equation or radiative transfer computation), proper-
ties, and data source (i.e., MODIS versus ISCCP) on the ac-
curacy of PAR�0�� retrieval. In addition, the performance of
four approaches that yield instantaneous PAR�0�� was tested
for low sun angles.

The first objective of evaluating PAR under daily and
monthly scales revealed that the OBPG approach ranked first
with uncertainty of 20%, and LUT (ISCCP and MODIS) ap-
proaches showed second-best performance with uncertainty of
around 26% on daily scales, respectively, and uncertainties
of 10% for the same approaches on monthly scales. Using em-
pirical cloud-correction methods, B method exhibited uncertain-
ties of 30%–35% and 9%–12%, and DS had 35%–40%, and
14%–16%, at daily and monthly scales, respectively. Uncertainty
of these methods can be slightly reduced, and the bias removed,
using a regionally tuned cloud correction. This parameterization
of cloud attenuation would require further evaluation at other
oceanic sites to assess its range of applicability.

Uncertainties in PAR estimates at the sea surface resulted
mainly in the differences in spatial and temporal resolution of
the atmospheric inputs. We showed that under clear and cloudy
sky conditions (CF < 0.7), the temporal resolution (3 h and 24 h)

was the main source of error. In overcast conditions, the spatial
scales of MODIS and ISCCP cloud products (1° and 280 km,
respectively), became the main source of uncertainties. Other
factors that affected the uncertainties in the retrieval of PAR
were the use of the plane-parallel atmospheric radiative transfer
model to generate look-up-tables, which failed to account for
broken clouds in the atmosphere, and uncertainties in deter-
mining surface reflection. In fact, methods that used satellite
data with coarse pixel resolution may depict bulk PAR for areas
larger than a single discrete station.

The second objective of the study was to address the impact
of different cloud products on PAR estimates. The individual
methods showed relative RMSD that varied with cloud condi-
tions from 9% to 14% (for CF < 0.3), 16% to 21% (for
0.3 < CF < 0.7), and 32% to 80% (for CF > 0.7), revealing
a trend of decreasing performance with increasing cloud cover.
The RMSD differences also responded differently to cloud
products (i.e., MODIS versus ISCCP).

Finally, the study focused on PAR estimation under low sun
elevation, including cloud conditions. The relative uncertainty
of 55% for the LUT method under low sun elevations was
larger than the value of 33% reported by Laliberté et al. [24]
in the Arctic Ocean. The result indicated a rapid decrease in
model performance for solar zenith angles higher than 78°.

We selected only algorithms that have been used in pub-
lished marine primary production models and assessed their
performance in clear and cloudy skies, and at low sun eleva-
tions. We showed that the current OBPG algorithm performed
well in all sky conditions, however it is limited to a single mea-
surement per day that is extrapolated to the entire day, which
adds uncertainties to the calculation of daily PAR�0�� and no-
tably for application to primary production computation when
short term variation in PAR induces rapid non-linear changes
in phytoplankton physiology and production. It should be
noted that at high latitudes, daily PAR estimates from multiple
passes and multiple polar orbiters may reduce uncertainties due
to diurnal variability of clouds. The method based on look-up-
tables also showed consistent results with in situ measurements
and provided the advantage of capturing daily variations with
the appropriate inputs. It would be the most adapted model if
spatial and temporal resolution were improved, especially for
the estimation of primary production. In the current study,
the ISCCP model had the highest temporal resolution (“three
hours”). One can anticipate that a finer temporal resolution
would improve the accuracy of daily PAR�0��. The use of clear
sky model corrected for cloud using simple formulation exhib-
ited slightly higher difference than the previous method but
their ease of application is an asset that should not been over-
seen, as evident from various studies [61–65]. It should be
noted that a model that considers parameterization of clouds
alone with cloud fraction as the only variable does not take into
account the essential physics in PAR�0�� estimation. Because
cloud transmittance is the other important variable under
cloudy skies, and can vary depending on cloud optical thick-
ness, such parameterization should be used with caution based
on local conditions.

Although the BOUSSOLE buoy is located at mid-latitude
(∼45°N ), one of the objectives of our study was to evaluate the

Fig. 11. Method scores with (top) and without (bottom) the
inclusion of SB_DS_M, SB_DS_IS, GC_DS_M, and GC_DS_IS
methods.
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performance of those algorithms in conditions that are frequently
encountered at high latitudes where cloud cover and low sun
elevations are frequent [38]. We acknowledge that the types
of clouds found at high latitudes do differ from those found
in the BOUSSOLE area. Also, the impact of haze (which is an-
other common feature above Arctic waters) on the PAR reaching
the sea surface was not considered, given that no satellite
observations of such atmospheric conditions currently exist.
Nevertheless, the present study is a first step in thoroughly assess-
ing and understanding the limitation of PAR algorithms under a
variety of cloud coverage and low sun elevation.

It is likely that the results derived from the current study at a
single site can be extrapolated to other regions. The quantifi-
cation of the uncertainties will probably change with location
(i.e., increase with increasing latitude and cloudy sites), but we
are confident that the overall comparison between models
would hold given that we have assessed various cloud covers
and sun angles, and that the radiative transfer model would
provide similar results in similar atmospheres independently
of locations.

The quantified PAR uncertainties suggest that adequate
representation of clouds and their properties both on spatial
and temporal scales are significant. Also, more efforts to quan-
tify uncertainties under low sun elevations by more evaluation
studies in different regions and time scales are necessary in
accurate estimations of PAR, which is important for primary
production studies. A major effort towards considering the rep-
resentation of diurnal-cycle measurements with hourly changes
in irradiance fields (e.g., due to clouds) improves daily inte-
grated PAR values.

An interesting future perspective is to combine the available
Geostationary and Polar-orbit Ocean Color satellites’ data that
will be able to capture hourly variations in cloud cover, which
may improve the model’s performance. The surface albedo may
cause great uncertainties under cloudy conditions, hence the
parameterization of the method for different sea-surface condi-
tions would be useful in future studies. The LUT method had
the ability to decompose total irradiance into direct and diffuse
components, an important aspect when deriving PAR just
below the sea surface from PAR just over the sea surface to ac-
count for Fresnel reflection of direct and diffuse components.
The OBPG method directly estimates PAR below surface
(a factor of 1 − As, is introduced to estimate PAR above surface
from PAR below surface). Our study showed that under given
conditions, simple cloud formulations perform similar to more
complex models. The next step would be to assess possible
improvements, and gain in PAR retrieval accuracy when using
complex approaches that would use supplementary ancillary
data, such as cloud altitude, cloud phase, and mean cloud drop-
let size [66].
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