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The characteristics and benefits of ocean color merged data sets created using a semi-analytical model and
the normalized water-leaving radiance observations from the SeaWiFS, MODIS-AQUA and MERIS ocean color
missions are presented. Merged data products are coalesced from multiple mission observations into a single
data product with better spatial and temporal coverage than the individual missions. Using the data from
SeaWiFS, MODIS-AQUA and MERIS for the 2002–2009 time period, the average daily coverage of a merged
product is ∼25% of the world ocean which is nearly twice that of any single mission's observations. The
frequency at which a particular area is sampled from space is also greatly improved in merged data as some
areas can be sampled as frequently as 64% of the time (in days). The merged data presented here are
validated through matchup analyses and by comparing them to the data sets obtained from individual
missions. Further, a complete error budget for the final merged data products was developed which accounts
for uncertainty associated with input water-leaving radiances and provides uncertainty levels for the output
products (i.e. the chlorophyll concentration, the combined dissolved and detrital absorption coefficient and
the particulate backscattering coefficient). These merged products and their uncertainties at each pixel were
developed within the NASA REASON/MEaSUREs and ESA GlobColour projects and are available to the
scientific community. Our approach has many benefits for the creation of unified Climate Data Records from
satellite ocean color observations.
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1. Introduction

Remote sensing of the Earth system has been an invaluable tool to
study and monitor the biosphere and its components (land, ocean or
atmosphere) and over the years a wide variety of physical or
biogeochemical variables have been collected by various Earth
observing satellite sensors. Passive-microwave and thermal infrared
(e.g. AVHRR) satellite data are collected over the oceans since about 3
decades to monitor sea surface temperature (see e.g. Reynolds et al.,
2007; Parkinson & Cavalieri, 2008) while others like altimetry or
ocean color are more recent and observations have been made on a
global scale for more than a decade (e.g. Merrifield et al., 2008;
McClain, 2009). For each of these variables, multiple sensors with
similar characteristics have contributed to the development of the
satellite time-series through a succession of missions designed to
provide one or more specific products. The planning and timing of
satellite missions are generally designed to allow some overlap
between successive generations of a sensor, which permits sensor
intercomparisons and allows biases across missions to be quantified
and accounted for (e.g. Castro et al., 2008).

Presently, there are several global satellite sensors orbiting the
Earth and sampling the color of the oceans (e.g. GeoEye's SeaWiFS,
NASA's MODIS on the TERRA and AQUA platforms and ESA's MERIS on
Envisat). It seems logical to attempt to merge the data sets from these
missions to create unified data products. This would result in sets of
single synthetic products with greater coverage of the world's oceans
on shorter time scales instead of several, possibly divergent, data sets.
If the data products are well characterized and consistent among
missions, their unification as a single synthetic product is a way to
build a univocal time-series of a particular product over the lifetimes
of several missions. It is also a way to develop consistent Essential
Climate Variables time-series (GCOS, 2003) or Climate Data Records
(NRC, 2004; Loeb et al., 2009; Siegel et al., in preparation) and
international planning for a virtual constellation of ocean color
satellite missions which would satisfy these needs has recently
begun (e.g., IOCCG newsletter Sept. 2008, http://www.ioccg.org/
news/Sept2008/news.html). Such a unification can be conducted by
merging the data from the different sensors.

http://www.ioccg.org/news/Sept2008/news.html
http://www.ioccg.org/news/Sept2008/news.html
mailto:stephane@icess.ucsb.edu
http://dx.doi.org/10.1016/j.rse.2010.04.002
http://www.sciencedirect.com/science/journal/00344257
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In the case of ocean color, several data merging efforts have taken
place in recent years (Gregg and Conkright, 2001; Kwiatkowska &
Fargion, 2002; Maritorena & Siegel, 2005; Pottier et al., 2006; IOCCG,
2007) under the NASA SIMBIOS and REASoN projects or the ESA
GlobColour program. This merger can be performed on final data
products, literally compositing observations from different missions
into a single data set, or by intermixing observations of the spectral
water-leaving radiance, NLw(λ), from different sources in a bio-
optical model to derive merged products (e.g., IOCCG, 2007). Both
approaches have been used andmerged data sets are now available to
the scientific community. For example, the NASA Ocean Biology
Processing Group (OBPG) distributes a merged Chlorophyll (CHL)
product from SeaWiFS and MODIS-AQUA CHL data while fields of CHL
and Inherent Optical Property (IOP) products from the inversion of
merged NLw(λ) of SeaWiFS, MODIS-AQUA and MERIS are available
through the UCSB-NASA Ocean Color MEaSUREs (formerly REASoN)
and the ESA GlobColour projects (see Table 1 for URLs). This paper will
focus on the latter approach where combined NLw(λ) spectra from
different sensors are used in a bio-optical model (Maritorena & Siegel,
2005) to simultaneously derive several “merged” ocean color
products as well as uncertainty determinations for each of them.
Maritorena and Siegel (2005) presented only a demonstration of this
approach using a limited number of scenes (18) from SeaWiFS and
MODIS-TERRA. Since then, data from other ocean color sensors
(MODIS-AQUA and MERIS) have become available while issues with
the MODIS-TERRA data made that sensor unreliable for climate-scale
ocean color studies (Franz et al., 2008).

Here, the model-based approach for ocean color data merging
described in Maritorena and Siegel (2005) is applied to the SeaWiFS,
MODIS-AQUA (hereafter referred to as “AQUA”) and MERIS NLw(λ)
data to create long time-series of merged data produced under the
NASA Ocean Color MEaSUREs and the ESA GlobColour projects. In the
present paper, some of the characteristics and benefits of these
merged data sets are documented for the 2002–2009 period for which
the three sensors are simultaneously operational. We provide
coverage estimates to demonstrate the benefits of merging and
present a validation of the final merged products. An error budget is
also presented where uncertainties in the input NLw(λ) from each
sensor and model errors are quantified and taken into account to
generate uncertainty estimates for each output product and at each
pixel of an image. Outstanding issues associated with sensors data or
inter-sensor biases are also discussed as well as how data merging
could be the path toward building consistent Climate Data Records.
Table 1
Differences between the MEaSUREs and GlobColour data processing using the GSM01 model
include the red bands and output products are at a 4.6 km resolution. In the MEaSUREs proje
data to match the resolution of SeaWiFS which is also the resolution of the output products. N
now includes theMERIS data. The NASA Ocean Biology Processing Group CHLmerged produc
GSM products are also available through the NASA Giovanni system: http://reason.gsfc.nas

MEaSUREs

Sensors SeaWiFS
MODIS-AQUA
(MERIS)

Input data Level 3 binned
Bands used SeaWiFS: 412, 443, 490, 510, 555

AQUA: 412, 443, 488, 531, 551
MERIS: 412, 443, 490, 510, 560

Sensor specific weighting of NLw(λ) None

Spatial resolution of output products 9 km
Products uncertainties and QC products Confidence intervals

(linear approximation of nonlinea
inference region; Bates & Watts,1

Data file format HDF
Data access http://wiki.icess.ucsb.edu/measur
2. Methods

The bio-optical model-based merging procedure and its associated
features are described in Maritorena et al. (2002) and Maritorena and
Siegel (2005) and its main traits are briefly summarized below. One of
the major features of the approach is that it combines the normalized
water-leaving radiances from different sensor data sets. Over each
particular pixel of a geographical grid common to SeaWiFS, AQUA and
MERIS, the NLw(λ) spectra from the available sensors at that pixel are
selected and combined in a single, multi-source, spectrum which is
then used in the inversion of the GSM01 semi-analytical ocean color
model (Maritorena et al., 2002). The model inversion results in the
simultaneous retrieval of multiple ocean color related variables,
namely the sub-surface chlorophyll-a concentration, CHL, the com-
bined absorption coefficient of the particulate and dissolved organic
material at 443 nm, CDM, and the particulate backscattering coeffi-
cient at 443 nm, BBP, as well as uncertainty levels and covariance
matrices of the retrievals. Only the bands in the visible are used in the
inversion and, depending on which sensors collected data for a
particular bin, the NLw(λ) spectrum that enters the model is made
from 6 to 19 spectral data points. When more than one sensor is
available, the resulting radiance spectrum will consist of a mix of
spectral bands that are either unique, coming from only one sensor, or
replicated for bands that are common to several sensors (Fig. 1). In
other words, the resulting NLw(λ) combined spectrum has improved
spectral resolution and contains replicated measurements for some
bands as illustrated in Fig. 1. While both the MEaSUREs and
GlobColour projects use the GSM01 model to generate merged
products, there are some differences in data processing and data
handling which result in differences between the two sets of products,
mostly in eutrophic waters and coastal areas. The differences between
the MEaSUREs and GlobColour projects are summarized in Table 1.

Merged products were generated using the GSM01 model from
SeaWiFS (version 5.2), AQUA(v1.1) and MERIS (v2.0/Q) daily NLw(λ)
fields for the time period common to the three sensors (July 2002–
2009). The complete archives of SeaWiFS, AQUA and MERIS were also
individually processed using the GSM01 model in order to compare
merged and individual mission data sets. The three main variables
(CHL, CDM and BBP) are produced along with their uncertainty
estimates. In addition, metrics of the quality of the retrievals, like the
χ2, the covariance matrix of the retrievals and residuals (spectral
differences between observed and modeled radiances re-built from
the retrieved variables) are also available. The products are also time-
. For GlobColour, the data are processed from level-2, 1 km resolution NLw(λ) data that
ct the MODIS-AQUA and MERIS level-3 binned NLw(λ) data are first converted to 9 km
ote that the MEaSUREs project initially merged the SeaWiFS and AQUA data only but it

t is available at http://oceancolor.gsfc.nasa.gov/cgi/l3. Some of the NASA OBPG and UCSB
a.gov/Giovanni/.

GlobColour

SeaWiFS
MODIS-AQUA
MERIS
Level 2
SeaWiFS: 412, 443, 490, 510, 555, 670
AQUA: 412, 443, 488, 531, 551, 667
MERIS: 412, 443, 490, 510, 560, 620, 665
Derived from matchup statistics
(see text)
4.6 km

r regression
988)

Standard deviation
(diagonal elements of the retrievals covariance matrix).
Available on request: χ2, residuals, covariance matrices
NetCDF

es/ http://www.globcolour.info/
http://hermes.acri.fr/

http://oceancolor.gsfc.nasa.gov/cgi/l3
http://reason.gsfc.nasa.gov/Giovanni/
http://wiki.icess.ucsb.edu/measures/
http://www.globcolour.info/
http://hermes.acri.fr/


Fig. 1. Bands of the individual sensor used in the merging and resulting combination.
Numbers in parentheses indicate the number of times a band is repeated in the
concatenated NLw(λ) array.
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composited in 4-day, weekly (8-day) and monthly data. These
products are available as global mapped or binned files (see Table 1
for details and how to access to the merged and individual mission
data products).
3. Results

3.1. Example of data products

Fig. 2 shows some examples of daily imagery for NLw(443) from
SeaWiFS (Fig. 2A), AQUA (Fig. 2B) and MERIS (Fig. 2C) as well as for
the daily GSM CHL merged products (Fig. 2D) for August 18, 2005.
Fig. 2A, B and C illustrates the differences in daily sampling between
the three sensors in terms of sun glint and their swaths width and
orientation. SeaWiFS provides the best coverage mostly because of its
ability to tilt to avoid sun glint and because of its large swath. Data
gaps caused by sun glint are visible inside the AQUA swaths (Fig. 2B)
while another noticeable characteristic is MERIS's narrow swath
(Fig. 2C) relative to SeaWiFS or AQUA. The CHL image (Fig. 2D) that
results from the merging of the NLw(λ) data from the three sensors
using GSM01 shows the obvious improvement in daily coverage
compared to the individual missions.

For daily data, the combinations of data sources can be mapped for
each bin (Fig. 3A, for August 18, 2009) to show which sensor or
assemblage of sensors were available over each bin, globally, on a
particular date. For daily images, a majority of the bins comes from
individual sensors as, on average over the 2002–2009 period, 31%
(standard deviation: 4.6%) of the valid bins of a product come from
Fig. 2. Daily maps (August 18, 2005) of the NLw(443) from A) SeaWiFS, B) MODIS-AQUA an
model of the combined NLw(λ) from the three sensors.
SeaWiFS only data, 22% (standard deviation: 4.5%) come from AQUA
only data and 17% (standard deviation: 3.7%) come from MERIS only
data. The SeaWiFS–AQUA combination makes about 17% (standard
deviation: 2.9%) of a product daily bins while each of the other
combinations (SeaWiFS–MERIS, MERIS–AQUA and SeaWiFS–AQUA–
MERIS) represent less than 5.1% of the bins on average.

The multi-day imagery (4-day, 8-day, and monthly) for CHL and
the other two daily GSM products (CDM and BBP) are also presented
as examples (Fig. 3B to F). The composite imagery shows the
significant gain in coverage with multi-day merged data (see below
for more details). The relationships between the daily CHL, CDM and
BBP products generated by the GSM01 model and comparisons with
the SeaWiFS OC4v4 (O'Reilly et al., 2000) CHL are described in Siegel
et al., 2005a,b. Typically, the CHL and CDM merged products values
span 2 or 3 orders of magnitudes and they generally do not show
discontinuities between areas with different data sources. The range
of BBP values is more constrained (1.5 order of magnitude) and the
BBP imagery is more affected by noise than the other products as will
be discussed later in the manuscript.
3.2. Spatial coverage

Increased daily coverage of the world ocean is the most obvious
benefit of themerging of data frommultiple sensors. The average daily
global coverage by SeaWiFS, AQUA and MERIS and for their various
possible combinations for the 2002–2009 period is presented in Fig. 4
where the 100% ocean coverage is determined from the sum of the
deep and shallow water masks in the SeaDAS software (http://
oceancolor.gsfc.nasa.gov/seadas/). Each single sensor covers, on
average, from about 8% to ∼15% of the world ocean daily (MERIS:
7.77% with a standard deviation of 1.05%; AQUA: 11.81% with a
standard deviation of 1.03%; SeaWiFS: 14.58% with a standard
deviation of 1.03%). When sensors are combined, daily coverage
increases from about 17% (AQUA–MERIS) to ∼25% (SeaWiFS–AQUA–
MERIS) (right side of Table 2). Coverage shows some seasonal
variation with peaks in the boreal spring (March–May) and early fall
(Sept–Oct) and lower values in summer (June–July) and winter (Dec–
d C) MERIS. D) Daily map of the merged CHL derived after the inversion in the GSM01

http://oceancolor.gsfc.nasa.gov/seadas/
http://oceancolor.gsfc.nasa.gov/seadas/


Fig. 3. A)Map of the data sources used to develop themerged image. Data sources are indicated by the first letter of the sensors (S: SeaWiFS, A: AQUA, M:MERIS) or by a combination
of letters when more than one source is present (SA: SeaWiFS+AQUA, SM: SeaWiFS+MERIS, AM: AQUA+MERIS and SAM: SeaWiFS+AQUA+MERIS, B) daily merged CDM
product, C) daily BBP product, D) 4-day merged CHL composite, E) 8-day merged CHL composite and, F) monthly merged CHL composite. Data are for August 18, 2005.
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Jan). The improvement in coverage is most beneficial for daily data as
the difference in coverage between individual sensors and merged
data decreaseswith composite imagery (Fig. 5, left side of Table 2). For
daily data, the improvement in coverage between a single sensor and
the merged data (calculated as 100⁎(nbins_merged−nbins_sensor)/
Fig. 4. Average daily global coverage for the 2002–2009 period for SeaWiFS (white squares),
As in Fig. 3a, the combinations of sensors are identified by the letters associated with each
nbins_sensor) is 72.9%, 113.5% and 224.6% for SeaWiFS, AQUA and
MERIS, respectively. These numbers drop to 5.7%, 10.4% and 19.5% for
monthly composite imagery. The combination of sensors improves
coverage significantly even for composite imagery over long periods of
time but the biggest improvements are clearly seen for daily and
AQUA (stars) andMERIS (triangles) and the four possible combinations of these sensors.
individual sensor.



Table 2
Improvement in global coverage in merged data compared to individual missions (2002–2009).

Improvement (%) over single mission Average percentage cover of the ocean (standard deviation)

SeaWiFS MODIS-AQUA MERIS SeaWiFS MODIS-AQUA MERIS MERGED

Daily 72.98 113.55 224.58 14.58 (1.03) 11.81 (1.03) 7.77 (1.05) 25.22 (1.88)
4-Day 36.90 68.03 126.27 41.62 (4.67) 33.91 (2.97) 25.18 (4.97) 56.98 (6.24)
8-Day 22.76 41.32 80.23 59.06 (6.72) 51.31 (4.52) 40.23 (6.90) 72.50 (7.59)
Monthly 5.71 10.39 19.55 82.95 (9.79) 79.43 (4.75) 73.34 (9.47) 87.69 (8.87)
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composite imagery over a few days. Beside surface area coverage
improvement, another important aspect of coverage is the frequency
at which a particular area is sampled with data merging relative to
individual missions.

3.3. Temporal coverage (=sampling frequency)

The combination of data from multiple sensors also allows for
improved temporal coverage because it increases the frequency at
which a particular bin can be observed. The global sampling frequency
for the individual sensors and when they are merged is illustrated in
Fig. 6. The frequency of coverage (expressed in number of days of
valid observations over the period July 2002–April 2009) is influenced
by the orbital and field-of-view characteristics of each sensor as well
as by clouds, sun glint and atmospheric correction failures (caused e.g.
by dust or absorbing aerosols). The general distribution of the
frequency of coverage is similar for the 3 sensors and shows a strong
asymmetry between the northern and southern hemispheres and
some differences between the different oceans. The central Pacific
Ocean south of the equator, the western part of the tropical South
Atlantic and Indian, the Mediterranean Sea, central Atlantic, the West
coasts of North and Central America, South Africa, Madagascar and
Australia are the areas with most frequent coverage. Conversely, high
latitudes (50° and up), the eastern part of the north equatorial Pacific,
the tropical eastern Atlantic and off the Peru–North Chile coast are
much less often sampled.

For the July 2002 to April 2009 period, the median value of the
coverage frequency by SeaWiFS is 14.45% which is equivalent to
∼53 days/year on average. One fourth of the bins get data more than
19% of the time (∼69 days/year) and another 25% gets data less than
8% of the time (29 days/year). At best, a bin is sampled 45.37% of the
time (∼158 days/year) when using SeaWiFS data alone. For AQUA, the
median sampling frequency is 10.94% of the time (∼40 days/year),
Fig. 5. Average and standard deviation of coverage for daily and multiple-day
composite imagery for SeaWiFS, AQUA and MERIS and when the three sensors are
merged for the 2002–2009 period.
25% of the bins get data less than 6.4% of the time (∼23 days/year) and
the 25% of the bins that are themost frequently sampled contains data
at least 16.25% of the time (∼59 days/year) and the area with the best
sampling gets data 47.84% of the time (∼175 days/year). AQUA
achieves a better maximum coverage value than SeaWiFS mostly
because SeaWiFS had several relatively long data gaps since 2008 and
also because the transformation of the AQUA data to the 9 km
resolution improves its overall coverage slightly (because the 9 km
bins can sometimes be made out of less than four 4.5 km bins). For
MERIS, the median sampling frequency value is 7.08% (∼26 days/
year), 25% of the bins get data less than 4.22% of the time (∼15 days/
year) and 25% of the bins are sampled more often than 9.73% of the
time (∼36 days/year). Maximum sampling frequency for MERIS is
23.46% of the time (∼85 days/year). The overall lower numbers for
MERIS aremostly a consequence of its narrower swath.When the data
of the 3 sensors are merged, the median value is 22.45% (∼82 days/
year) and the low and high 25% of the bins limits are 12.72%
(∼46 days/year) and 30.95% (∼113 days/year), respectively. For the
merged data, the maximum frequency of sampling is 64.06% of the
time (233 days/year). This illustrates the huge benefits in spatial and
temporal coverage when using merged data. It also emphasizes the
fact that in most areas of the 9 km grid, composite imagery from any
particular mission is generally made out of very few data, even with
monthly composites.

SeaWiFS is the most frequent contributor to the total number of
days of data available in each individual bin. Typically, SeaWiFS
consistently contributes 40% to 50% of the time (Fig. 7) and this
contribution is relatively homogeneous in the 45°N–45°S region.
SeaWiFS contribution drops below 40% at high latitudes and on the
Eastern side of South America, South Africa and Australia. AQUA
contributes 30–40% of the time relatively uniformly globally except in
the equatorial regionwhere its contribution falls to 20–30% because of
loss of data caused by sun glint. AQUA is also an important contributor
in areas where SeaWiFS is a lesser contributor: West South America
and West Southern Africa. Because of its narrower swath, MERIS
contributes less frequently than the other two sensors. Typically,
MERIS collects data 20 to 30% of the time except in the gyres and in the
South hemisphere between the subtropical and Antarctic conver-
gence zones where its contribution drops below 20%. Interestingly,
MERIS is a stronger contributor at high latitudes and in the equatorial
region where it compensates well the relative lack of AQUA data.
These differences and complementarities in coverage result from the
sensors' technical and orbital characteristics but in the case of MERIS,
some of the differences are also likely to come from differences in data
processing (e.g. cloud masking and atmospheric correction).

3.4. Error budget and product uncertainties

The model-based approach for data merging described here also
enables the assessment of uncertainties associated with the different
components of the procedure. The non linear fitting method in the
GSM01 model searches the set of retrievals that best minimizes the
mean square difference between the modeled and measured NLw(λ).
The fitting technique can also account for uncertainties in the
measured NLw(λ) and in the model by using them as weights in



Fig. 6. Geographic distribution of the frequency of coverage (in % of total number of valid days) for the 2002–2009 period for A) SeaWiFS, B) MERIS, C) AQUA and D) when the three
sensors are merged.

Fig. 7. Geographic distribution of the frequency at which each particular sensor
contributes to the imagery (2002–2009).
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the fitting procedure. When the inversion is performed using several
sensors (Nsensor), each with several wavebands (Nλj), the normalized
least-squares minimization function (χ2) can be expressed as

χ2 =
1

Nb obs−Nb paramð Þ ∑
Nsensor

j=1
∑
Nλj

i=1

NLw gsm; i; jð Þ−NLw sensor; i; jð Þð Þ2
σ2
sensor i; jð Þ + σ2

gsm i; jð Þ
ð1Þ

where Nb_obs is the total number of combined bands, Nb_param is
the number of retrieved parameters, NLw(gsm, i, j) is the modeled
normalized water-leaving radiance for band i of sensor j, NLw(sensor,
i, j) is the measured normalized water-leaving radiance in band i of
sensor j, σsensor(i, j) is the uncertainty associatedwith the NLw of band
i of sensor j and σgsm(i, j) is the uncertainty due to the GSMmodel for
band i of sensor j. Note that the sum of σsensor

2 (i, j) andσ gsm
2 (i, j)

corresponds to the diagonal terms of the full covariance matrix of
errors (i.e. the sum of covariances of the measured and modeled
radiances).

Assuming the errors on the input NLw(λ), σsensor, and from the
bio-optical model, σgsm, can be reliably characterized and that the
errors in the satellite observations are unbiased, it is then possible to
propagate this information through the retrieval procedure and to
derive uncertainty estimates for each of the output products on a
pixel-by-pixel basis. It should be mentioned that possible (but
unknown) systematic errors in the satellite data or in the model are
not taken into account in the present Gaussian approach. The present
work should be viewed as a practical, first attempt at deriving a
reasonable error budget for ocean color data and products.

3.4.1. Uncertainties of the satellite water-leaving radiance spectra, σsensor

Statistical figures from comparisons between satellite and in situ
NLw(λ) observations were used to determine the expected level of
error for each band. Using the original NOMAD data set (Werdell &
Bailey, 2005) plus data from the NASA SeaBASS archive (Werdell &
Bailey, 2002), the BOUSSOLE buoy (Antoine et al., 2008b) and above-
water radiometric measurements (Hooker et al., 2004; Zibordi et al.,
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2006b,c), the normalized water-leaving radiances from each of the
sensors were compared to coincident in situ data for each of the bands
in the visible through regression statistics. These comparisons are
presented in Table 3. Overall, the agreement between the sensors'
measurements and in situ data is good as indicated by the high R2 or
slope values. The agreement is generally slightly poorer for the blue
bands (412 and 443 nm) as these bands can sometimes be affected by
imperfect atmospheric correction. The 510 nm band in MERIS also
shows some discrepancies compared to in situ data. The spectral
shapes of these NLw(λ) uncertainties are similar for the 3 sensors and
show a general decrease of the RMS from the blue to the red bands.
For the inversion, the uncertainty level of each band i of each sensor
j, σsensor(i, j), is arbitrarily set to half the value of the RMS shown in
Table 3 (Fanton d'Andon et al., 2008; Mélin et al., 2009). It should be
noted that this only impacts the products uncertainty estimates
derived during the inversion but has no influence on the values of the
product retrievals.

3.4.2. Model errors, σgsm(i, j)
To evaluate the errors caused by the GSM01 model the input

radiance spectra from the NOMADv1 data set were compared to the
GSM01 radiance spectra that correspond to the best fit obtained
during the inversion (or, in other words, the reconstructed radiance
spectra when the model is used in the forward mode and produces a
radiance spectrum given a set of Chl, CDM and BBP values). This was
performed in two steps. At first, inversions are performedwithout any
weighting of the NLw(λ) data. Then, the RMS/2 values from the
comparison of the measured andmodeled NLw(λ) spectra are used to
weight the NLw(λ) in a new set of inversions which will produce the
final estimates of themodel error. Additional sets of inversions are not
required as the spectral RMS errors remain stable. The statistical
comparisons between the input in situ NLw(λ) and the GSM spectra
reconstructed from the retrievals of the inversion (forwardmode) are
presented in Table 4. Like for the NLw(λ) errors, the model error
(σgsm,i) for each band is set to the corresponding RMS/2 value.

3.4.3. Uncertainties of the output products, σprod(x)
Currently ocean color satellite products from any space agency are

distributed without estimates of their uncertainties. While matchup
analyses can provide an instantaneous global estimate of the level of
error one can expect on a particular product, they do not say much
about the spatial and temporal distribution of the errors. A pixel-by-
pixel uncertainty estimate for any particular satellite-derived product
is very important for modelers or in data assimilation. It is also a
Table 3
Characterization of uncertainties on NLw(λ) for the three sensors from statistical analyses

Band Sensor N Slope Intercept R2 Mean ratio Median ratio M

412 MERIS 210 0.766 0.375 0.475 1.688 1.275
443 MERIS 299 0.785 0.311 0.625 1.357 1.150
490 MERIS 204 0.799 0.216 0.774 1.159 1.098
510 MERIS 129 0.577 0.326 0.532 1.16 1.126
555 MERIS 314 0.766 0.119 0.877 1.027 0.972
620 MERIS 8 1.123 0.031 0.649 1.767 1.534
670 MERIS 154 0.739 0.038 0.888 2.119 1.179 1
412 AQUA 363 0.664 0.125 0.525 0.908 0.836
443 AQUA 530 0.768 0.142 0.663 1.001 0.958
490 AQUA 297 0.857 0.088 0.794 0.986 0.978
531 AQUA 41 0.771 0.080 0.774 0.962 0.958
555 AQUA 550 0.902 0.044 0.888 1.006 0.973
670 AQUA 327 0.896 0.001 0.792 1.271 0.938
412 SeaWiFS 440 0.991 −0.020 0.835 1.008 0.929
443 SeaWiFS 647 0.929 0.071 0.801 1.044 0.992
490 SeaWiFS 516 0.889 0.067 0.779 0.978 0.962
510 SeaWiFS 377 0.87 0.063 0.787 0.982 0.964
555 SeaWiFS 686 0.904 0.032 0.864 0.995 0.954
670 SeaWiFS 210 0.845 0.010 0.878 1.365 0.941
requirement of most space agencies but these uncertainty estimates
are seldom available. With model-based approaches, it is possible to
evaluate the uncertainties of the retrieved products. When the GSM01
model was developed, the confidence interval of the retrievals was
estimated by linear approximation of nonlinear regression inference
region (Bates &Watts, 1988). Similarly when a Levenberg–Marquardt
technique is used for the least-squares minimization, the square-root
of diagonal elements of the covariance matrix provide the standard
deviation associated with each of the retrieved parameters (Press
et al., 1992) as is done in the GlobColour project (see also Van Der
Woerd & Pasterkamp, 2008 or Wang et al., 2005 for an alternative
approach). The calculation of the χ2 or the residuals between
observed and GSM01 modeled NLw(λ) are metrics available to assess
the quality of the inversion and of the error budget.

It is possible to assess how accurate some components of our error
budget are by comparing modeled values to actual in situ measure-
ments. For example, using the satellite radiance data, NLw(sensor, i, j),
that have a coincident in situ measurement in the NOMADv2 data set,
it is possible to compare NLw(sensor, i, j) to the spectra reconstructed
by GSM01 from the retrievals, NLw(gsm, i, j). The mean and standard
deviation of the residuals (with residuals=NLw(sensor, i, j)−GSM
reconstructed NLw(gsm, i, j)) between the input and modeled NLw
spectra are presented in Fig. 8 for each of the sensors used in the
present study. The range of spectral values of the NLw(sensor, i, j)
input uncertainties (Table 3) are also plotted for each sensor (white
squares). The figure shows that the input uncertainties on NLw(λ) are
consistent with the residuals which is a desirable feature and
validates, to a large degree, the NLw(λ) input uncertainties analysis
and the use of RMS/2 to quantify the uncertainties in the radiances
andmodel. A bias is however observed at 443 nm for the three sensors
and, to a lesser extent, for SeaWiFS data at 490 nm. This consistent
bias among the three sensors suggests a possible weakness in the
model at 443 nm.

Using the NOMADv2 in situ data set, it is also possible to assess
whether or not the uncertainty estimates for the output products
are accurate. This can be done by comparing the estimated
uncertainties of product x, σprod(x), from the model to the actual
errors between the model retrieved variables and the in situ
measurements. If for a particular product x the uncertainty
estimates σprod(x) are reliable (in the sense that they are truly
representative of its standard deviation), the actual error should be
lower than σprod(x) in about 68% of the cases or, similarly, the
distribution of true observed errors normalized by the estimated
errors ((retrieved x− in situ x)/σprod(x)) should follow a standard
between satellite and in situ data.

ean %diff Median %diff Bias RMS In_situ range Satellite_range

77.220 31.742 0.206 0.376 0.025 2.278 0.13 2.501
44.125 19.552 0.131 0.296 0.047 2.220 0.177 2.485
24.668 14.831 0.061 0.183 0.108 2.454 0.207 2.254
23.263 17.092 0.069 0.160 0.275 2.324 0.362 2.075
20.146 16.734 −0.050 0.224 0.167 3.573 0.211 2.960
76.719 53.431 0.038 0.041 0.032 0.085 0.061 0.126
24.632 31.606 0.008 0.049 0.005 0.754 0.028 0.645
30.577 22.191 −0.114 0.262 0.078 2.475 0.104 2.390
21.923 15.575 −0.038 0.202 0.064 2.220 0.075 2.074
14.927 10.730 −0.023 0.160 0.138 2.153 0.099 2.034
21.589 16.604 −0.064 0.196 0.322 2.097 0.224 2.009
14.785 9.437 −0.019 0.128 0.050 2.327 0.161 2.429
54.890 30.059 −0.008 0.043 0.005 0.588 0.016 0.877
29.843 19.914 −0.028 0.239 0.058 2.834 0.133 2.766
22.080 14.682 0.008 0.200 0.100 2.815 0.091 2.352
15.973 12.616 −0.029 0.168 0.176 2.330 0.163 2.272
15.272 12.191 −0.022 0.130 0.195 2.218 0.219 2.383
18.396 15.129 −0.024 0.143 0.167 2.492 0.172 2.486
65.316 32.437 −0.007 0.046 0.003 0.819 0.002 0.748



Table 4
Statistical comparison between the input in situ NLw(λ) and the GSM spectra reconstructed from the retrievals of the inversion (forward mode). For each band, the RMS/2 value is
used as the model error.

Band N RMS Bias RMs rel Bias rel Mean ratio Mean(%) diff Median(%) diff Min insitu Max insitu Min mod Max mod R2 Intercept Slope

412 260 0.015 −0.011 0.037 −0.015 0.969 3.089 1.179 0.075 2.420 0.055 2.366 0.995 −0.024 1.015
443 260 0.121 −0.079 0.063 −0.046 0.903 9.703 7.349 0.095 3.203 0.090 2.669 0.982 0.023 0.893
490 260 0.119 0.094 0.045 0.039 1.095 9.472 8.564 0.177 4.375 0.205 4.915 0.991 −0.089 1.168
510 260 0.078 −0.060 0.052 −0.039 0.918 9.015 9.726 0.218 4.437 0.237 4.375 0.980 −0.086 1.028
531 260 0.056 −0.042 0.048 −0.037 0.922 8.414 9.075 0.273 4.331 0.272 4.249 0.991 −0.067 1.030
555 260 0.044 −0.031 0.045 −0.031 0.935 7.567 6.169 0.202 4.202 0.191 4.092 0.991 −0.012 0.974
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centered normal distribution. The estimated and actual errors for
the three GSM retrievals using the NOMAD data set are compared in
Fig. 9. These plots show a usually conservative overestimation of
the GSM01 errors for CHL (upper left panel) and BBP (lower left
panel) as the model error estimates are generally higher than the
actual errors. The situation is different for CDM (upper right panel)
where the modeled error is frequently lower than the actual error.
This is confirmed by the probability density distribution of the
reduced residuals (=(retrieved x− in situ x)/σprod(x); lower right
plot) where CHL and BBP are very close to the expected normal
distribution while CDM departs from it. The symmetrical distribu-
tion observed for the three GSM01 retrievals indicates that the
inversion does not introduce a bias (or a very small one in the case
of CDM).

An example of an uncertaintymap for themerged CHL on February
2, 2009 is presented in Fig. 10A and uncertainty maps associated with
each of the GSM products are available from the websites listed in
Table 1. The merged CHL uncertainty map for February 2, 2009 shows
a wide range of variation with complex and uneven patterns that
generally depend on which sensor or combination of sensors were
available at each particular bin and how close the modeled and
satellite NLw(λ) spectra are (see Maritorena & Siegel, 2005).
Uncertainties for the multi-day (composite) imagery can be calculat-
ed as

σmultidays =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

∑
ndays

i=1

1
σ2
i

vuuuut
ð2Þ

under the assumption that the error is independent from one day to
the next. Consequently the multi-days error estimates decrease as the
number of days of data increases and the uncertainties for the
composite imagery (Fig. 10B) are generally much smoother and lower
than the daily values.
Fig. 8. Mean and standard deviation of the spectral residuals between the NLw(senso
(residuals=NLw(sensor, i, j)−GSM reconstructed NLw(gsm, i, j)) for the SeaWiFS (left), M
NLw(λ) as determined from the matchup analyses and model error analyses are also plotted
measurement in the NOMADv2 data set.
3.5. Matchups

Matchup analyses (Bailey & Werdell, 2006) are the most
common means to assess and validate satellite ocean color data,
although this approach may be questionable considering the scarce
measurements available for some products. Matchup analyses
consist in comparisons between satellite retrievals and in situ
measurements collected in close spatial and temporal windows. For
validation of single mission data, matchup analyses are generally
performed with satellite data at the highest possible resolution in
order to compare the pinpoint in situ measurement with a satellite
retrieval that represents the smallest possible surface area.
Typically, these matchup comparisons are performed using level-
2 data at a resolution close to 1 km with a time constraint of having
both the satellite and in situ data collected within 3 to 6 h from each
other (Bailey & Werdell, 2006).

In the case of the data presented here, it is necessary to relax the
spatial and temporal constraints to maximize the number of points
available for comparisons (see discussion in IOCCG, 2007). Here, 9 km
binned satellite GSM retrievals from the merging of the SeaWiFS,
AQUA and MERIS data are compared to in situ measurements of CHL,
CDM and BBP made out of the NOMAD data set (Werdell & Bailey,
2005) for the 1997–2003 time period and additional data from the
SeaBASS archive (Werdell & Bailey, 2005) for the 2003–2007 period.
In the present analysis, a matchup is considered valid when on a
particular day, the latitude and longitude of an in situ measurement
fall within the boundaries of a valid (i.e. non-zero) satellite 9 km bin
(equal-area sinusoidal grid) for the same date. The satellite compo-
nent of a matchups is limited to the bin identified by the date and its
geographical coordinates (=center bin latitude and longitude) and,
because of the coarse 9 km used here, it is not extended to
surrounding bins as is usually done for higher resolution single
mission matchups (Bailey & Werdell, 2006).

Matchups for the three GSM products derived from the merging of
SeaWiFS, AQUA and MERIS data are presented in Fig. 11. For each
matchup point, there are seven possible scenarios: the satellite
r, i, j) spectra and the “best fit” spectra from the inversion of the GSM01 model
ODIS-AQUA (center) and MERIS (right) sensors. The range of uncertainties of the input
(white squares). The NLw(sensor, i, j) data used in the figure have a coincident in situ



Fig. 9. Comparisons between the predicted and actual uncertainties in the GSM01 products (upper left: CHL; upper right: CDM; lower left: BBP). The predicted uncertainties σprod(x)
are outputs from the least-squares minimization on the radiance spectra (see text). Here, we used NLw(sensor, i, j) data that have a coincident in situ measurement in the NOMADv2
data set. If the predicted uncertainties are accurate, about 2/3 of the data points should be below the 1:1 line. The centered variables ((retrieved x− in situ x)/σprod(x)— lower right
panel) show a normal distribution for CHL (circles) and BBP (stars) while the CDM (triangles) distribution departs from normal (curve).

Fig. 10. Maps of the estimated error in the CHL product. A) Estimated CHL error (as a %
of the retrieved CHL value) for a daily image (February 2, 2009) and, B) estimated CHL
error for a monthly image (February 2009).
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retrieval comes from the data of a single sensor, i.e. SeaWiFS only or
AQUA only or MERIS only, or it can come from one of the four possible
combinations of these sensors (SeaWiFS+AQUA, SeaWiFS+MERIS,
AQUA+MERIS or SeaWiFS+AQUA+MERIS, see e.g. Fig. 4). In Fig. 11,
each situation is illustrated by a particular symbol, consistent with
previous figures, and the overall regression statistics between in situ
and satellite estimates are also included (Type II regression on log10-
transformed data). The regression statistics between the in situ and
satellite-derived CHL estimates shows a good agreement between the
two sets with the slope of the regression for the merged CHL close
to one (0.945). However the GSM retrievals seem to underestimate
in situ CHL for some stations in meso- and eutrophic waters
(CHLN1 mg m− 3). In the matchups with the retrievals from
the individual sensors only (i.e. not merged), the underestimation of
CHL is more systematic with AQUA than with SeaWiFS or
MERIS (not shown). This remains true when the NASA or ESA
operational CHL algorithms are used as they show a systematic
difference in CHL between AQUA and the other sensors (see also
Siegel et al., in preparation; NASA OBPG at http://oceancolor.gsfc.nasa.
gov/ANALYSIS/PROCTEST/ and discussion below). For the three
sensors and for the merged data, the negative CHL bias is driven, to
some extent, by some very coastal (e.g. West Florida Shelf, Monterey
Bay, Coastal Benguela, and Chesapeake Bay) or high latitude
(operantar cruise) stations for which the GSM model may not be
well suited (Maritorena et al., 2002). An additional issue in these
waters comes from frequently inaccurate atmospheric correction that
often results in water-leaving radiance in the blue to be too lowwhich
in turn affects the quality of the GSM retrievals.

http://oceancolor.gsfc.nasa.gov/ANALYSIS/PROCTEST/
http://oceancolor.gsfc.nasa.gov/ANALYSIS/PROCTEST/


Fig. 11.Matchup statistics for the threeGSMmergedproducts, CHL (left), CDM(center) andBBP (right). The symbol of eachmatchuppoint indicateswhich satellite data sourceswereused
for that point (the symbol coding is the same as in Fig. 4; squares: SeaWiFS only, stars: AQUA only, triangles: MERIS only, asterisks: AQUA+MERIS, white circles: SeaWiFS+MERIS,
diamonds: SeaWiFS+AQUA, black circles: SeaWiFS+AQUA+MERIS).
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Matchups for CDM and BBP are also plotted in Fig. 11 for the same
time period (1997–2007). The CDM matchups show that the satellite
retrievals are generally good over the two orders of magnitude
covered by the available in situ data. A group of outliers that strongly
overestimates CDM are stations from the “Plumes and Blooms”
program in the Santa Barbara Channel where atmospheric correction
is known to be a major issue (Bailey & Werdell, 2006). When these
particular stations are removed from the analysis, the regression
statistics between the in situ and satellite-derived CDM are generally
very good even in waters with very high CDM (not shown). The CDM
retrievals with the MERIS data alone show a lot of dispersion and the
slope of the regression is relatively high (1.58). Except for the high
CDM estimates mentioned above, the CDM retrievals from MERIS
generally underestimate the in situ data. This is likely related to the
fact that the MERIS NLw(412) values are generally high compared to
those of AQUA or SeaWiFS (Zibordi et al., 2006a; Antoine et al., 2008a)
which would tend to generate lower CDM estimates.

Because accurate backscattering measurements are difficult to
achieve and are not yet accurately routinely performed, available
validation data for particulate backscattering are much scarcer than
for CHL or CDM and they cover a limited range of values. The
backscattering matchups are good overall even though the great
majority of in situ data are from coastal areas. The BBP retrievals are
best for the merged data set and for SeaWiFS alone while retrievals
using both AQUA alone or MERIS alone show higher slope and
dispersion. Overall, the matchups with the merged data are good,
particularly considering that many coastal observations are included
in the in situ data set used in the present study.

3.6. Time-series of the GSM products from the individual sensors and
from the merged radiances

The comparison of the individual sensors time-series with the
time-series from the merged data is another way to assess and
validate the GSM products and to check their consistency. Fig. 12
shows the time-series of the monthly global geometric mean of the
GSM CHL, CDM and BBP retrievals for the individual sensors and for
the merged data between 50°N and 50°S for bins where the bottom
depth is deeper than 1000 m (in order to discard polar and coastal
waters). For CHL (Fig. 12, upper panel) the agreement between the
four sets of products (from SeaWiFS only, from AQUA only, MERIS
only and from the merged radiances) is generally good between 2002
and 2006 with a slight seasonality characterized by peaks of CHL
during early boreal spring and end of summer (although the two
peaks do not appear every year). During that time period, the AQUA
retrievals are slightly lower than the estimates from the other sources
while the highest CHL values are generally derived when using the
MERIS data alone. From 2006 and on, the AQUA CHL departs
significantly from that of the other sources and shows a steady
decrease with time while the CHL estimates from SeaWiFS or MERIS
are stable. The AQUA CHL estimates decrease by 16% between the
2002–2005 and 2006–2009 periods (0.104 and 0.087 mg m−3,
respectively on average). The shift associated with the AQUA data is
also clearly seen on the other products.

For CDM, the AQUA time-series tends to show slightly lower values
than SeaWiFS for the 2002–2006 time period but they get higher than
SeaWiFS around 2006 and at the end of the time-series (Fig. 12,
middle panel). The MERIS CDM estimates are consistently lower than
for the other sensors. For MERIS, the generally higher CHL and lower
CDMvalues are again likely to be a consequence of the higher radiance
values in the blue in the MERIS data relative to the other sensors. For
each of the primary data sources, the CDM estimates show an
increasing trend starting between 2006 and 2007.

Clear differences also exist for the BBP product. The SeaWiFS and
MERIS BBP estimates are generally very close and are significantly
higher than those of AQUA (Fig. 12, lower panel). Again, the AQUA
data show an increasing trend that matches in time the changes
observed in CHL and CDM whereas the BBP values from SeaWiFS and
MERIS do not show an increase in BBP.

It is out of the scope of this paper to present an analysis of possible
long-term trends in ocean color products; however for these analyses
to be performed in the future, it is necessary to ensure that the
observed variations of a particular product are not artifacts caused by
instrumental or observational issues and it is hoped that significant
improvements will come from reprocessing efforts that are on-going
for all three sensors. That said, there are clear differences between the
GSM retrievals from the different sensors. These differences and their
possible causes are discussed and analyzed in more details below.

3.7. Discussion and conclusion

The discrepancies between the GSM products derived from
different data sources can be explained, to a large extent, by
differences in the radiometric data from each sensor. Differences in
the radiometry can have various origins, from calibration to
atmospheric correction, to sensitivity drift or data processing, for
example. Because of its fitting technique and the possibility to weigh
the different bands of each sensor in it, the merging procedure
described here can handle a significant amount of noise in the NLw(λ)
data. In any case, the retrievals are affected by these differences and
important biases between data sets will often result in inaccurate or
erroneous retrievals.



Fig. 12. Time-series of the global, 50°N–50°S, deep-water (ZN1000 m) geometric mean for CHL (upper plot), CDM (middle plot) and BBP (lower plot) for SeaWiFS only (squares),
AQUA only (stars), MERIS only (triangles) and for the merged products (circles).
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In the plots presented in Fig. 12, each of the GSM products shows a
time-series that departs from those of other sensors. In some cases, a
consistent difference is observed throughout thewhole time-series (e.g.
MERIS CDM or AQUA BBP) while in other cases a change appears
sometime during the time-series (e.g. AQUA CHL or CDM). The drop in
the global CHL average from AQUA starts approximately at the end of
2005 and the increase in theCDMandBBP values starts at the same time
which suggests that these changes in the retrievals have the same cause.
Because all three products are affected at the same time and since
neither the SeaWiFSnor theMERIS time-series shows a similar decrease
in CHL, it seems legitimate to suspect that an issue with one or more of
the AQUA bands is responsible for the variations observed in the AQUA
GSMproducts from 2006 and on. The global geometric mean of NLw(λ)
corresponding to the GSM products time-series (50°N–50°S,
depthN1000 m) are presented in Fig. 13 and they clearly show a
decrease in the average NLw(412) since around the beginning of 2006.
The decrease is rather important considering this is an average over a
very large area. The average NLw(412) value for the 2002–2005 period
is 1.56 mW cm−2 µm−1 sr−1 (standard deviation=0.04) and is
1.39 mW cm−2 µm−1 sr−1 (standard deviation=0.11) in 2006–2009.
The other bands appear stable except maybe for 443 nm which also
seems to decrease slightly at the end of the time-series. Surprisingly, the
effect of the decrease in the 412 channel is more pronounced in the CHL
retrievals than in CDM. The AQUA CDM time-series shows that the
AQUA values were close and generally lower than those of SeaWiFS
during the first ∼3.5 years of the mission but tend to get higher than
SeaWiFS once the 412 nm channel drift has started. An increase in the
CDM retrievals with decreasing NLw(412) makes sense since the CDM
absorption is at its highest at that channel. The big effect of the NLw
(412) decrease on CHL is likely to be related to the parameterization of
aph(412) in GSMwhich has a very low coefficient (seeMaritorena et al.,
2002) and is thus sensitive to variations of the radiance in that
waveband. The BBP values are also affected as they show an increase
that starts towards the end of 2005. This issuewith the AQUANLw(412)



Fig. 13. Times-series of the global, 50°N–50°S, deep-water (ZN1000 m) geometric mean of AQUA NLw(λ) for the 2002–2009 time period.
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does not influence the CHL estimates from the NASA OC3M operational
maximum band-ratio algorithm (O'Reilly et al., 2000) as it does not use
that particular band.

Other issues can be observed on the BBP retrievals, in the SeaWiFS
and MERIS data in particular. For SeaWiFS, the BBP images frequently
show some isolated very high BBP values in areas where the
surrounding bins have lower and consistent values. These high BBP
retrievals are generally observed in the vicinity of clouds. These high
BBP values correspond to pixels with very high radiance compared to
their neighbor pixels and are known as the “speckling” issue in
SeaWiFS data (Hu et al., 2000, 2001). Speckling has several possible
origins: incorrect atmospheric correction, incomplete cloud masking,
digitalization errors for the near-infrared wavebands and the lack of
filtering in the binning process that creates binned GAC data from
higher spatial resolution LAC data. The inversion of the GSM model
using these high radiance spectra results in BBP values that are
overestimated (Fig. 14). The other two GSM products are much less or
not affected by this issue as isolated high values are infrequent and of
much lower magnitude for CHL and CDM. The stronger effect of
speckling on BBP may be the result of the spectral characteristics of
the erroneous radiances if the enhancement is more important in the
green to red bands relative to the blue bands. In practice, these high
radiance bins could be filtered (e.g. by not considering bins within
some distance of a cloud) and not used in the GSM inversion but this
could reduce significantly the number of useable bins for the merging.
This can also be filtered during the LAC to GAC binning process and
such a procedure is considered for the next SeaWiFS reprocessing (B.
Franz, personal communication).

High BBP values are also observed in some swaths associated with
MERIS data. In that case, the swath is divided in two with its Eastern
side appearing as a stripe of high BBP values. The same pattern is
present in the radiances and is clearly noticeable for the long
wavelength bands (≥560 nm) where radiances are higher than on
the other side of the swath (Fig. 14). This issue results from a
combination of factors: camera effect (different cameras see the
Western and Eastern parts of a swath), imperfect calibrations and
inter-calibrations among the cameras and thermal dependency of the
dark signal correction scheme used for MERIS. The problem seems
restricted to some areas and is not present throughout the MERIS
mission. A fix is currently being investigated (L. Bourg, personal
communication).
These issues do not appear on the AQUA data and do not seem to
affect the other products. BBP being the variable with the smallest
values (one or more order of magnitudes smaller than CDM) of the
three retrieved variables it is more sensitive to noise in the radiance
data than CHL or CDM.

The data issues discussed above emphasize that for semi-analytical
models that use all possible visible spectral bands of a sensor, like GSM,
the quality of the spectral data entering the model is key to derive
accurate retrievals even if uncertainties among the bands are taken into
account exist as is the case in this study. It should also bementioned that
the upcoming reprocessing of the three sensors used here are likely to
correct or at least alleviate many of the issues described above.

Ocean color products constructed from multiple sensor data have
various potential benefits for the research and applications commu-
nities working on biogeochemistry or the marine biosphere in
general. Well characterized and quality controlled merged data sets
eliminate the headaches that result from the existence of multiple
versions of the same product from different missions simultaneously
operational. Withmerged data sets, data users have access to a unified
product with features and characteristics that none of the individual
missions have. Here, we have documented the benefits and
characteristics of ocean color merged data products derived from
the inversion of the GSM01 semi-analytical model. This model allows
the merging of satellite data at the normalized water-leaving radiance
level and the simultaneous retrieval of several ocean color products.
Merged products obviously have better spatial and temporal coverage
than what individual missions can provide. Using the data from the
three current operational global ocean color missions, namely
SeaWiFS, AQUA and MERIS, the global daily coverage of a merged
product is about 25% of the world ocean, about twice as much as what
the single mission with the best coverage, SeaWiFS, provides.
Similarly, the frequency at which a particular area is sampled from
space is generally greatly improved when merged data are used. The
magnitude of the improvement in sampling frequency is not
homogeneous throughout the world ocean. High latitude regions
remain poorly sampled even when combining the data from three
sensors. Conversely, the inter-tropical zone is the most frequently
sampled except for the equatorial region because of sun-glint issues
with non-tilting sensors. By combining the data from SeaWiFS, AQUA
and MERIS some areas are sampled as frequently as 64% of the time
(233 days/year on average).



Fig. 14. Top panels: maps of NLw(555) from SeaWiFS (left), AQUA (center) and MERIS (right) and corresponding BBP maps (lower panels) for the 0°–20°S/155°W–135°W region on
January 20, 2003. High NLw(555) are present around cloud gaps in SeaWiFS data and these high NLw(λ) spectra result in high BBP retrievals. Generally, AQUA does not show these
high radiance spectra and consequently, the AQUA imagery has much smoother BBP fields than SeaWiFS. For MERIS, some swaths show a clear difference in the NLw(λ) between
their left and right sides which seems to indicate an issue with the cameras and their intercalibration (see text).
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The merged data presented here have been validated through
matchup analyses and by comparing them to the data sets obtained
from individual missions. Overall, the three main products derived
from the GSM01 model agree very well with in situ data except for
some particular coastal waters where atmospheric correction is a
known issue which limits the accuracy of the NLw(λ) spectra entering
the model. Disagreements between products derived for the single
sensors are traced to disagreement in the radiometric data and each of
the sensors processed here has its own set of issues, most of which
should be taken care of during future reprocessings. This stresses the
fact that the constant monitoring of data quality of individual sensors,
intercomparisons of sensors and bias analysis will remain an absolute
and crucial requirement for ocean color in the future.

Another important feature of themerged data presented here is that
all the GSM01-derived products have documented uncertainties
associated to them on a pixel-by-pixel basis. To our knowledge, the
MEaSUREs and GlobColour data sets are the first and only examples of
distributedoceancolor data productswithuncertainties associatedwith
each pixel of an image. The uncertainty maps are data products in their
own rights and they provide information that should be useful to
modelers usingoceancolor data assimilation (e.g. Nerger&Gregg, 2007;
Gregg et al., 2009). Moreover, a complete error budget has been
developed from the input radiances to the model and, ultimately, the
products. This is also the first time this has been done for satellite ocean
color data. Comparisons of the NLw(λ) from each sensor with in situ
datawere used to assign spectralweights to the radiances of each sensor
in the inversion of the GSM01 model. The errors caused by the model
itself were also assessed by comparing in situ NLw(λ) spectra to those
corresponding to the model inversion best fits. These error estimates
were taken into account in assigning the uncertainty weights of the
different wavebands of each sensor. It should be noted that the analysis
of the uncertainties in theNLw(λ)was conducted before theAQUANLw
(412) drift started. However, the uncertainty analysis should ideally be
performed regularly, in parallel with what is done with matchup data.
One of the limitations of the error budget presented here is that a
constant uncertainty value is set for each band of each sensor while it is
likely that these uncertainties vary seasonally and geographically, and
trends exist over time. Future ocean color missions like OLCI on-board
Sentinel 3 will go further by including an error budget analysis that will
allow propagating the uncertainties on NLw(λ) at pixel level from TOA
measured radiance errors.

The MEaSUREs and GlobColour merged data sets are available to
the research community (Table 1) and a growing number of users
have shown interest in using these data for their research work. It is
very likely that more merged data sets will emerge in the future as
there is a growing need for the development of long-term time-series
of ocean color data. In particular, the quantification of changes in the
ocean biosphere over several decades will require data from multiple
sensors to be assembled together as it is very unlikely that a single
sensor or even a single family of sensors (e.g. the VIIRS sensors on NPP
and NPOESS, or the OLCIs on Sentinel-3A and 3B) can provide all the
necessary data. Climate Data Records (NRC, 2004), CDRs, are satellite
data sets covering a long enough period of time to allow the
determination of climate variability and change. Because CDRs need
to be long enough to allow discrimination between trends and oceanic
decadal-scale cycles, they can only be developed from multiple
satellite missions. In addition, a CDR needs to be made out of data that
are consistent throughout the time-series and since it is likely that
data from different sensors will overlap at some point in the time-
series, the use of a GSM-like ocean color model will satisfy both the
consistency requirement (in terms of data product derivation) and
the merging capability to unify data sets during periods of overlap.
The development of ocean color CDRs will face many difficulties one
of which is how to deal with possible biases among sensors (see Siegel
et al., in preparation; Djavidnia et al., 2009). With the ability of the
GSM model approach to apply statistical weight to the NLw(λ), it is
possible, to some extent, to correct for possible biases in the data from
different sensors. However as shown in the present study, the quality
of the radiometric data is a crucial element to ensure accurate
retrievals from a multispectral semi-analytical model and thus the
ability to monitor the stability and accuracy of the radiance data is
essential to the development of future ocean color CDRs.

In the foreseeable future of satellite ocean color, it is probable that
there will be periods of time when data will come from multiple
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missions flying simultaneously, while at other times there will be only
a single instrument available. The model-based approach used here
can handle all these situations while ensuring consistency in products
derivation throughout the whole time-series. It has the additional
benefit of being able to generate ocean color products from multiple
sources of data as coherent wholes, with documented uncertainties.
These features and the fact that there is ample room for improvement
in both ocean color semi-analytical models and merging procedures
make model-based approaches obvious candidates for the creation of
ocean color Climate Data Records in the future.

Acknowledgments

The work presented here was funded by NASA under the SIMBIOS,
REASoN and MEaSUREs programs and by the ESA DUE GlobColour
program with continuation support from the EC FP7/2007–2013
program under grant agreement no. 218812 (MyOcean). The SeaWiFS
and MODIS-AQUA data were available thanks to NASA and OrbView
while ESA provided the MERIS data. The NASA OBPG group is also
thankfully acknowledged for his constant support and help and for
providing access to the NOMAD data set and the SeaBASS archive. The
authors also wish to thank Manuela Lorenzi-Kayser, Pete Peterson,
Erik Fields, Jim Frew, Michael Colee, Peter Slaughter, Julien Demaria,
Gilbert Barrot, Jacques Daniel and the GlobColour Team for their
invaluable help at various stages of this work.

References

Antoine, D., d'Ortenzio, F., Hooker, S. B., Bécu, G., Gentili, B., Tailliez, D., et al. (2008a).
Assessment of uncertainty in the ocean reflectance determined by three satellite
ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the
Mediterranean Q4 Sea (BOUSSOLE project). Journal of Geophysical Research, 113,
C07013. doi:10.1029/2007JC004472

Antoine, D., Guevel, P., Desté, J. -F., Bécu, G., Louis, F., Scott, A. J., et al. (2008b). The
«BOUSSOLE» buoy: A new transparent-to-swell taut mooring dedicated to marine
optics: Design, tests and performance at sea. Journal of Atmospheric and Oceanic
Technology, 25, 968−989.

Bailey, S. W., &Werdell, P. J. (2006). A multi-sensor approach for the on-orbit validation
of ocean color satellite data products. Remote Sensing of Environment, 102, 12−23.

Bates, D. M., & Watts, D. G. (1988). Nonlinear regression analysis and its applications.
Wiley.

Castro, S. L., Wick, G. A., Jackson, D. L., & Emery, W. J. (2008). Error characterization of
infrared andmicrowave satellite sea surface temperature products for merging and
analysis. Journal of Geophysical Research, 113, C03010.

Djavidnia, S., Mélin, F., & Hoepffner, N. (2009). Comparative analysis of themulti-sensor
global ocean colour data record. Ocean Science – Discussion, 6, 1611−1653.

Fanton d'Andon, O., Antoine, D., Mangin, A., Maritorena, S., Durand, D., Pradhan, Y., et al.
(2008). Ocean colour sensors characterisation and expected error estimates of
ocean colour merged products fromGlobColour. Proceedings ocean optics XIX, Barga,
Italy, October 6–10 (pp. 51).

Franz, B. A., Kwiatkowska, E. J., Meister, G., & McClain, C. (2008). Moderate Resolution
Imaging Spectroradiometer on Terra: Limitations for ocean color applications.
Journal of Applied Remote Sensing, 2, 023525.

GCOS, (2003). The second report on the adequacy of the global observing systems for
climate in support of the UNFCCC. GCOS-82 (WMO/TD No. 1143), Bonn, Germany,
April 2003. (http://www.wmo.int/pages/prog/gcos/Publications/gcos-82_2AR.pdf).

Gregg, W. W., & Conkright, M. E. (2001). Global seasonal climatologies of ocean
chlorophyll: Blending in situ and satellite data for the coastal zone color scanner
era. Journal of Geophysical Research, 106(C2), 2499−2516.

Gregg,W.W., Friedrichs, M. A.M., Robinson, A. R., Rose, K. A., Schlitzer, R., Thompson, K. R.,
et al. (2009). Skill assessment in ocean biological data assimilation. Journal of Marine
Systems, 76(1–2), 16−33.

Hooker, S. B., Zibordi, G., Berthon, J. -F., & Brown, J. W. (2004). Above-water radiometry
in shallow coastal waters. Applied Optics, 43(21), 4254−4268.

Hu, C., Carder, K. L., & Muller-Karger, F. E. (2000). Atmospheric correction of SeaWiFS
imagery: Assessment of the use of alternative bands. Applied Optics, 39, 3573−3581.
Hu, C., Carder, K. L., & Muller-Karger, F. E. (2001). How precise are SeaWiFS ocean color
estimates? Implications of digitization-noise errors. Remote Sensing of Environment,
76(2), 239−249.

IOCCG, Ocean-Colour Data Merging. (2007). In W. Gregg (Ed.), Report of the
International Ocean-Colour Coordinating Group, No. 6, IOCCG, Dartmouth, Canada.

Kwiatkowska, E. J., & Fargion, G. S. (2002). Merger of ocean color data from multiple
satellite missions within the SIMBIOS project. Proc. SPIE symp. — Remote sensing of
the atmosphere, ocean, environment, and spaceOcean remote sensing and applications,
Hangzhou, China, vol. 4892. (pp. 168−182) Oct.

Loeb, N. G., Wielicki, B. A., Wong, T., & Parker, P. A. (2009). Impact of data gaps on
satellite broadband radiation records. Journal of Geophysical Research, 114, D11109.
doi:10.1029/2008JD011183

Maritorena, S., & Siegel, D. A. (2005). Consistent merging of satellite ocean color data
sets using a bio-optical model. Remote Sensing of Environment, 94(4), 429−440.

Maritorena, S., Siegel, D. A., & Peterson, A. (2002). Optimization of a semi-analytical
ocean color model for global scale applications. Applied Optics, 41(15), 2705−2714.

McClain, C. R. (2009). A decade of satellite ocean color observations. Annual Review of
Marine Science, 1, 19−42.

Mélin, F., Zibordi, G., & Djavidnia, S. (2009). Merged series of normalized water leaving
radiances obtained from multiple satellite missions for the Mediterranean Sea.
Advances in Space Research, 43(3), 423−437.

Merrifield, M. A., Gill, S., Mitchum, G. T., &Woodworth, P. L. (2008). Sea level variations,
in state of the climate in 2007. In D. H. Levinson, & J. H. Lawrimore (Eds.), Bulletin of
the American Meteorological Society, 89. (pp. S107−S109).

National Research Council (NRC). (2004). Climate data records from environmental
satellites.Washington, DC: National Academies Press 116 pp.

Nerger, L., & Gregg, W. W. (2007). Assimilation of SeaWiFS data into a global ocean-
biogeochemical model using a local SEIK filter. Journal of Marine Systems, 68(1–2),
237−254.

O'Reilly, J.E., & 24 Coauthors, 2000: SeaWiFS postlaunch calibration and validation
analyses, part 3. NASA tech. memo. 2000-206892, Vol. 11, S.B. Hooker and E.R.
Firestone, Eds., NASA Goddard Space Flight Center, 49 pp.

Parkinson, C. L., & Cavalieri, D. J. (2008). Arctic sea ice variability and trends, 1979–2006.
Journal of Geophysical Research, 113(C7), C07003.

Pottier, C., Garçon, V., Larnicol, G., Sudre, J., Schaeffer, P., & Le Traon, P. -Y. (2006).
Merging SeaWiFS and MODIS/AQUA ocean color data in North and Equatorial
Atlantic using weighted averaging and objective analysis. IEEE Transactions On
Geoscience and Remote Sensing, 44(11), 3436−3451 Part 2.

Press, W. H., Teukolsky, S. A., Vettering, W. T., & Flannery, B. P. (1992). Numerical
recipes in C: The art of scientific computing, 2nd edition. Cambridge University
Press 994 pp.

Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax,M. G. (2007). Daily
high-resolution-blended analyses for sea surface temperature. Journal of Climate,
20(22), 5473−5496.

Siegel, D. A., Maritorena, S., Nelson, N. B., & Behrenfeld, M. J. (2005a). Independence and
interdependencies among global ocean color properties: Reassessing the bio-optical
assumption. Journal of Geophysical Research, 110, C07011. doi:10.1029/2004JC002527

Siegel, D. A., Maritorena, S., Nelson, N. B., Behrenfeld, M. J., & McClain, C. R. (2005b).
Colored dissolved organic matter and its influence on the satellite-based char-
acterization of the ocean biosphere. Journal of Geophysical Research, 32, L20605.
doi:10.1029/2005GL024310

Siegel, D., McClain C.R., Behrenfeld, M.J., Fanton d'Andon Hembise, O., Antoine, D.,
Maritorena, S., Bailey, S., Franz, B., and others (in preparation). Challenges facing
the creation of satellite ocean color Climate Data Records.

Van Der Woerd, H. J., & Pasterkamp, R. (2008). HYDROPT: A fast and flexible method to
retrieve chlorophyll-a from multispectral satellite observations of optically
complex coastal waters. Remote Sensing of Environment, 112, 1795−1807.

Wang, P., Boss, E., & Roesler, C. (2005). Uncertainties of inherentoptical properties obtained
from semi-analytical inversions of ocean color. Applied Optics, 44, 4074−4085.

Werdell, P. J., & Bailey, S. W. (2002). The SeaWiFS Bio-optical Archive and Storage System
(SeaBASS): Current architecture and implementation, NASA/TM-2002-211617. Green-
belt, MD: NASA Goddard Space Flight Center 45 pp.

Werdell, P. J., & Bailey, S. W. (2005). An improved in-situ bio-optical data set for ocean
color algorithm development and satellite data product validation. Remote Sensing
of Environment, 98, 122−140.

Zibordi, G., Mélin, F., & Berthon, J. -F. (2006a). Comparison of SeaWiFS, MODIS and
MERIS radiometric products at a coastal site. Geophysical Research Letters, 33,
L06617. doi:10.1029/2006GL025778

Zibordi, G., Mélin, F., & Berthon, J. -F. (2006b). A time-series of above-water radiometric
measurements for coastal water monitoring and remote sensing product validation.
IEEE Geoscience and Remote Sensing Letters, 3(1), 120−124.

Zibordi, G., Strombeck, N., Mélin, F., & Berthon, J. -F. (2006c). Tower-based radiometric
observations at a coastal site in the Baltic Proper. Estuarine, Coastal and Shelf Science,
69(3–4), 649−654.

http://dx.doi.org/10.1029/2007JC004472
http://www.wmo.int/pages/prog/gcos/Publications/gcos-82_2AR.pdf
http://dx.doi.org/10.1029/2008JD011183
http://dx.doi.org/10.1029/2004JC002527
http://dx.doi.org/10.1029/2005GL024310
http://dx.doi.org/10.1029/2006GL025778

	Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits.....
	Introduction
	Methods
	Results
	Example of data products
	Spatial coverage
	Temporal coverage (=sampling frequency)
	Error budget and product uncertainties
	Uncertainties of the satellite water-leaving radiance spectra, σsensor
	Model errors, σgsm(i, j)
	Uncertainties of the output products, σprod(x)

	Matchups
	Time-series of the GSM products from the individual sensors and from the merged radiances
	Discussion and conclusion

	Acknowledgments
	References




