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Abstract 

Understanding long-term variations of ocean ecosystems requires untangling the time scales 

involved in their natural fluctuations. We applied a temporal decomposition procedure to two 

decades of satellite ocean color observations to characterize the time variability of surface 

Chlorophyll-a (SChl) in the Mediterranean Sea. In order to assess the reliability of the 

satellite data at capturing intraseasonal, seasonal and interannual variability, we first show 

that satellite SChl data compare well with field data of phytoplankton fluorescence from the 

long-term BOUSSOLE time series, at all three timescales. The decomposition procedure is 

then applied to satellite SChl and to mixing-layer depth (MxLD) data from an ocean 

reanalysis, both at the scale of the entire Mediterranean Sea. Our results reveal similar 

amplitude for the seasonal and intraseasonal SChl variations in the Northwestern bloom 

region, together explaining about 90% of the SChl variance. Coherent seasonal SChl 

variations occur at the scale of the bloom region (~400km) and are tightly connected with 

seasonal MxLD changes. Intraseasonal SChl fluctuations occur at smaller spatial scales 

(~100km), suggesting they would be generated by storms although they weakly correlate to 

variations of the MxLD reanalysis. Over the oligotrophic part of the Mediterranean Sea, 

about 80% of the variability in both SChl and MxLD are explained by basin-scale (~1000km) 

seasonal variations. Intraseasonal variability occurs at much smaller spatial scales, typical of 

mesoscale activity (~30 km).  These results support the hypothesis that seasonal SChl 

variations are driven by changes in MxLD, while mesoscale activity and storms drive the 

intraseasonal SChl fluctuations. 
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Plain Language Summary 

In the context of our changing climate, an ongoing challenge is to be able to reliably detect 

and attribute trends in ocean color records of surface chlorophyll-a (SChl), which is the only 

observable variable representative of the state of marine ecosystem available at global scale. 

However, the magnitude of the natural variability of SChl is much stronger than that of the 

SChl long-term trend. Furthermore, this natural variability occurs over a large range of 

unrelated time scales, making it difficult to detect and attribute a climate-driven trend. Here 

we focus on the variability over temporal scales that have been overlooked because their 

observation requires continuous measurements, i.e. fluctuations that are shorter than seasonal 

ones. In the case of the Mediterranean Sea, we show that such intraseasonal variations can be 

as large as seasonal ones, and that they may also be less predictable because they likely ensue 

from processes such as storms or ocean eddies.  
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1. Introduction 

In recent decades, anthropogenic climate change has impacted ocean ecosystems and 

thus human communities in various ways (Bindoff et al., 2019). An ongoing challenge is to 

be able to detect and reliably attribute long-term trends in ocean color records of surface 

chlorophyll-a (SChl), the only observable variable representative of the state of marine 

ecosystem available at the global scale. Even though more than two decades of satellite SChl 

over the world ocean are now available, the confidence in appraising SChl trends is still low 

(Bindoff et al., 2019). One of the reasons is that SChl fluctuations are characterized by large 

natural variability over a wide range of temporal scales, and a better understanding of this 

large natural variability is necessary to confidently attribute a climate change trend (Henson 

et al., 2010, 2016).  

Typically, SChl low-frequency (i.e. interannual) variations and long-term trends 

emerge after filtering seasonal and intraseasonal fluctuations. This is often simply achieved 

by computing trends from annually averaged SChl data (Behrenfeld et al., 2006; Martinez et 

al., 2009; Chavez et al., 2011; Gregg and Rousseau, 2014). This simple strategy may be 

suitable to filter out seasonal fluctuations but not intraseasonal fluctuations, which are less 

predictable and whose variance may be close to or even larger than the seasonal one 

(Thomalla et al., 2011; Salgado-Hernanz et al., 2019). Spring phytoplankton blooms which 

are typical SChl seasonal fluctuations at mid and high latitudes in the open ocean, are for 

example often characterized by a succession of rapid SChl increases and decreases, and hence 

exhibit a strong intraseasonal component (Taylor and Ferrari, 2011; Mayot et al., 2017; 

Salgado-Hernanz et al., 2019). This implies that year-to-year variations of the bloom project 

over a wide range of time scales. Understanding low frequency and long-term variations of 

the bloom hence requires a proper assessment of its interannual, seasonal and intraseasonal 

variations.  

Overall, and despite their potential importance, intraseasonal SChl fluctuations have 

received much less attention than their seasonal or interannual counterparts. The focus of this 

work is to contribute to filling this gap by providing a quantitative characterization of 

intraseasonal SChl variability in the ocean, evaluating its contribution to total variability and 

its spatial scales as well as suggesting plausible driving mechanisms. This is a prerequisite 

towards a better understanding of the drivers of low-frequency (i.e. interannual up to multi-

decadal) variability and long-term trends.  



 

 

©2020 American Geophysical Union. All rights reserved. 

A difficulty when quantifying intraseasonal SChl variations from satellite ocean color 

observations arises from the presence of clouds, which mask satellite retrieval over 

timescales similar to the ones we aim at capturing. To avoid this caveat, the present study 

investigates the temporal variability of SChl in the Mediterranean Sea, where cloud cover is 

generally low (Fig. 1d). Moreover, we take advantage of the presence of a fixed mooring at 

an offshore site in the bloom region of the Northwestern Mediterranean Sea, which provides 

high frequency, multi-year in-situ fluorescence data (Fig. 1a, BOUSSOLE site, Antoine et al., 

2006, 2008). The BOUSSOLE time series is unique in length and temporal resolution and is 

used to assess the reliability of merged satellite products in capturing intraseasonal SChl 

variability. The Mediterranean Sea also offers the advantage of hosting contrasted production 

regimes, including a spring bloom regime typical of other oceanic regions such as the North 

Atlantic (Levy et al., 1999; D'Ortenzio and d'Alcala, 2009; Bernadallo et al., 2012; Volpe et 

al., 2012; Lavigne et al., 2013; D’Ortenzio et al., 2014; Houpert et al., 2015, 2016; Mayot et 

al., 2016; Ruiz et al., 2019; Migon et al., 2020). In order to quantify intraseasonal SChl 

variations, we extract the intraseasonal, seasonal and interannual signals from the ocean color 

SChl time series using a method adapted from Vantrepotte and Melin (2011). With this 

method, the three signals are distinguished by their time scale of variability, typically above 

one year for interannual, between 6 months and one year for seasonal, and below 6 months 

for intraseasonal.  

Intraseasonal SChl variations may ensue from processes acting over a wide range of 

spatial scales. They can be driven by intraseasonal basin scale climate modes such as the 

Madden-Julian oscillation (Resplandy et al., 2009), by synoptic atmospheric forcing resulting 

from storms (Fauchereau et al., 2011; Carranza and Gille, 2015) and tropical cyclones 

(Menkes et al., 2016), or by oceanic mesoscale and submesoscale processes (Mahadevan et 

al., 2012; Pascual et al., 2017; Lévy et al., 2018; Ruiz et al., 2019) acting at even smaller 

scales. In the open Mediterranean basin, we expect storms and eddies to be the main driving 

mechanisms. Attributing in a quantitative way, the drivers of intraseasonal SChl variations is 

challenging, because it requires the knowledge of these drivers at high temporal resolution. 

Here we have attempted to compare SChl intraseasonal variations with variations in Mixing-

Layer Depth (hereafter MxLD) data issued from an ocean reanalysis and we show the limit of 

this comparison. We propose an indirect approach, which consists in quantifying the spatial 

scales associated with intraseasonal fluctuations. The underlying rationale is that 
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intraseasonal SChl variations driven by storms are likely to occur over larger spatial scales 

than those driven by oceanic mesoscale and submesoscale processes.  

The paper is organized as follows. Section 2 briefly reviews the regional context. 

Section 3 describes the data products and the statistical methods used to extract the 

intraseasonal signals and compute the spatial scales of variability, and Section 4 presents the 

main results. The paper ends with a discussion of these results in Section 5.  

2. Regional context 

The Mediterranean Sea is predominantly an oligotrophic basin, with a strong East-

West trophic gradient (Fig. 1a). Two dominant trophic regimes coexist characterized by their 

specific seasonal evolution of phytoplankton, often referred to as ‘bloom’ and ‘no-bloom’ 

regimes (Bosc et al., 2004; D'Ortenzio and d'Alcala, 2009; Lavigne et al., 2013; Fommervault 

et al., 2015; Mayot et al., 2016, 2017; Nieblas et al., 2014).  

The most productive Northwestern ‘bloom’ regime (hereafter NW bloom) exhibits a 

typical temperate pattern (Sverdrup, 1953; Mitchell and Holm-Hansen, 1991; D’Ortenzio et 

al., 2014) characterized by an increase in SChl that starts in fall, often interrupted in winter, 

and a stronger more intense bloom in spring that ends in summer (Bricaud et al., 2002; 

D’Ortenzio et al., 2014; Mayot et al., 2016; Houpert al., 2015, 2016). This region exhibits the 

highest SChl variance (>70%, Fig. 1c). It is the location of deep convection in winter that 

leads to a deepening of the mixing-layer (Fig. 1b). This deep mixing efficiently refuels the 

surface layer with nutrients. The spring SChl peak is driven by the seasonal stratification of 

the mixing-layer, implying a time lag between this SChl peak and the maximum depth 

reached by vertical mixing (Levy et al., 1998; D’Ortenzio et al., 2005; Marty and Chiavérini, 

2010; Lazzari et al., 2012; Lavigne et al., 2013; Houpert et al., 2015, 2016).  

The remaining of the basin hosts a ‘no-bloom’ regime, a typical low-productivity 

subtropical regime (Fig. 1a), with smaller seasonal SChl variations (Fig. 1c). In this regime, 

the winter mixing-layer is much shallower (<70m, Fig. 1c) and SChl peaks when the mixing 

layer is the deepest (Lavigne et al., 2013), nutrients being used as soon as they are injected 

into the euphotic layer.  

Numerous processes such as mesoscale and submesoscale activity, frontal dynamics, 

coastal influences and interannual to long-term variability modulate the productivity in this 
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basin (Estrada, 1996; Levy et al., 1999; D’Ortenzio et al., 2014; Houpert et al., 2015, 2016; 

Lavigne et al., 2013; D'Ortenzio and d'Alcala, 2009; Mayot et al., 2016; Ruiz et al., 2019). As 

a consequence, time series of SChl exhibits clear year-to-year variations in the timing, 

amplitude and spatial extent of the spring bloom in the NW bloom regime (Estrada, 1996 ; 

Bernadallo et al., 2012; Mayot  et al., 2016; Volpe et al., 2012).  

3. Data and Methods 

3.1 Satellite SChl 

We based our study on the data processed by the European Space Agency Ocean 

Color Climate Change Initiative (ESA OC-CCI; Sathyendranath and Krasemann, 2014; 

Sathyendranath et al., 2017). More precisely, we used the Level-3 Standard Mapped Images 

at 4x4-km spatial and 8-day temporal resolutions from January 1998 to December 2017 

(available at http://www.oceancolour.org/). This product merges data from the Moderate 

Resolution Imaging Spectroradiometer (MODIS)-Aqua, the Sea-Viewing Wide Field-of-View 

Sensor (SeaWiFS) and the MEdium Resolution Imaging Spectrometer (MERIS). The 

correlation between OC-CCI SChl and matching in-situ chlorophyll is 0.66 (Volpe et al., 

2007). This correlation is not improved when using regionally tuned algorithms such as 

MedOC4-CCI, although OC-CCI slightly overestimates low SChl values compared to 

MedOC4-CCI (Volpe et al., 2007). Nevertheless for practical reason, we chose the standard 

OC-CCI product because the regional MedOC4-CCI product is only available at time and 

space resolution finer than the one needed here. This choice is further discussed in Section 5.  

The data coverage of OC-CCI SChl is greater than 90% over the Mediterranean Sea 

(Fig. 1d). Grid cells with less than 90% of data were discarded and the remaining temporal 

gaps in the time series were filled by linear interpolation. These data are further re-gridded to 

a spatial resolution of 1/8° (~13-14km) to reduce the computational demand of the analysis.  

3.2 BOUSSOLE fluorescence 

We made use of in-situ fluorescence measurements at 9m depth from the BOUSSOLE 

mooring located in the Ligurian Sea at 7°54’E, 43°22’N (Antoine et al., 2006) to evaluate the 

performance of the satellite data at capturing SChl variability in the NW bloom region. The 

original fluorescence data has a 15-minute temporal resolution and was available from 2007 

to 2017 at the time of this study. 8-day composites were constructed from the original data to 
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allow a fair comparison with the satellite data. It must be noted that the few gaps arising from 

technical issues in the data acquisition (particularly in 2008 and 2010) may partly bias the 8-

day composites during these periods.  

In order to avoid contamination of the fluorescence signal by quenching, we only 

considered night data. To compare the in-situ and satellite data sets, we converted the 

fluorescence signal into SChl using a constant multiplicative coefficient. This coefficient 

(2.4) was determined by fitting the fluorescence data to the satellite matchups following the 

methodology developed by Lavigne et al. (2012) and satisfactorily applied to convert 

fluorescence data to Chlorophyll concentration in the Mediterranean Sea (Lavigne et al., 

2015). The Chlorophyll satellite data were averaged over a 1-degree box around the mooring 

location, before being used in the fitting procedure of fluorescence data.  

In order to apply the temporal decomposition procedure to the in-situ BOUSSOLE 

time series, the missing data in the 8-day field, which represent 17% of the original 

BOUSSOLE time series, were interpolated linearly or filled using the satellite SChl data 

around the mooring, when available. For a fair comparison with the satellite SChl product 

and temporal decomposition, they were subsequently masked in all the analyses discussed in 

this study.  

3.3 Model reanalysis mixing-layer depth (MxLD) 

We also used the MxLD product from the Mercator reanalysis MEDRYS1V2 (Hamon 

et al., 2016). The MEDRYS ocean reanalysis is based on a 1/12° (∼7 km) horizontal 

resolution and 75 vertical level model configuration of the Mediterranean Sea with the 

NEMO ocean model, NEMO MED12. This eddy-permitting resolution enables to simulate an 

elevated level of eddy activity, especially in the Alboran and Ionian regions (Hamon et al., 

2016). The atmospheric forcing used in MEDRYS is ALDERA - the dynamical downscaling 

of the ERA-Interim atmospheric reanalysis implemented with the regional climate model 

ALADIN-Climate. MEDRYS uses the Mercator Ocean data assimilation system SAM2 

(Brasseur et al., 2005). Altimeter data, satellite SST, temperature and salinity vertical profiles 

are jointly assimilated.  

We defined the MxLD as the turbocline depth, i.e. the depth of the water column over 

which the vertical diffusivity coefficient is larger than 5 X 10-4 m2 s-1. The daily, 1/12° MxLD 
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data available over the period extending from January 1998 to December 2012 were re-

gridded to 8 day composites on the same grid (1/8°) as the OC-CCI SChl re-gridded product 

The MEDRYS reanalysis is shown to perform better than hindcast simulations in 

terms of average temperature and salinity (Hamon et al., 2016). However, its performance in 

capturing the MxLD, or even the mixed-layer depth (MLD, i.e. the layer defined by a density 

difference of 0.01 with surface density), is difficult to assess because of the lack of data, 

particularly at the spatial and temporal scales necessary for this study (i.e., intraseasonal and 

down to the mesoscale).  

3.4 Timescale decomposition  

A SChl time series Xt can be decomposed into seasonal (St), interannual (Tt) and 

intraseasonal (It) components, such that Xt = St + Tt + It. A variety of approaches have been 

used in the past to perform such decomposition. For instance, Thomalla at al. (2011) have 

compared the full SChl time series to a repeated, mean seasonal cycle computed at each 

location to study the variability of phytoplankton blooms in the Southern Ocean. 

Alternatively, Vantrepotte and Melin (2011) and Salgado-Hernanz et al. (2019) have 

incorporated year-to-year variations in the seasonal signal, and have accounted for these 

variations before extracting the interannual signal. The SChl time series at the BOUSSOLE 

site reveals strong variations at seasonal time scale (Fig. 2a and Supplementary Fig. S1a). To 

account for these variations, we used a method adapted from Vantrepotte and Melin (2011) in 

which the seasonal cycle is allowed to vary from year to year (Method 1, left panels in Fig. 

2). We discuss the sensitivity to this choice by repeating the analysis using a second method 

in which the seasonal cycle is strictly periodic (Method 2, right panels in Fig. 2). Unless 

specified, all analysis presented in the core of this paper make use of the first decomposition 

method.  

Method 1, with year-to-year variations in the seasonal cycle: The decomposition is 

based on a simplified version of the statistical method initially developed in the X11 software 

by the US bureau of the Census, commonly referred to as the Census X-11 algorithm (e.g. 

Vantrepotte and Melin, 2009). Census X-11 is an iterative algorithm, which uses simple 

moving averages, Henderson filters and band pass filters to decompose a timeseries Xt into St, 

Tt and It. Previous studies (e.g. Vantrepotte and Melin, 2009, 2011; Colella et al., 2016) have 

applied the Census X-11 decomposition procedure to monthly datasets, with the aim of 



 

 

©2020 American Geophysical Union. All rights reserved. 

investigating the seasonal and interannual variations of ocean biogeochemical parameters. We 

adapted this procedure to data with a higher temporal resolution (8 day composites) to extract 

intraseasonal variations. The decomposition is applied at the level of individual grid cells, and 

requires continuous time series with no data gap. This modified algorithm consists of eight 

successive steps, which are described below. 

 (a) Initial estimate 

(1) Estimation of the first interannual component (Tt
1) by an annually centered moving 

average (47 terms moving average as each year contains 46 time steps) on the initial time 

series Xt. Zt, defined as Zt = Xt - Tt
1, comprises the seasonal and intraseasonal components. 

(2) Estimation of the first seasonal component (St
1), by applying a seasonal running mean on 

Zt. First, Zt .is averaged over three successive years at every time step of the considered years: 

St
0 = (Zt (i-1,m)  + 2 (Zt (i,m) ) + Zt (i+1,m) )/4, where Zt (i,m)  is the series subsample for each time 

step  m=1, 2,.. 46 of each year i=1,2…n. The resulting time series  (St
0) is then normalized by 

subtracting its annually centered running mean (MSt
0). St

1 = St
0 - MSt

0. The seasonally 

adjusted series is then computed as, Zt 
1= Xt - St

1 

(b) Revised estimate 

(3) The improved estimate of the interannual component (Tt
2) is obtained by applying a 

Henderson filter (Henderson, 1916) of weight 51 on the seasonally adjusted series (Zt 
1). Then 

the interannual adjusted series is estimated, Zt
2

 = Xt - Tt
2
 

(4) Step (2) is applied on the interannual adjusted series (Zt
2) to obtain the secondary estimate 

of the seasonal component (St
2). Then the seasonally adjusted series is estimated, Zt

3 = Xt - St
2
 

(5) The intraseasonal signal (It
1) is estimated by applying a bandpass filter of 8-88 days on 

the secondary estimate of the seasonal component (St
2). We should note that we also tested a 

5 step running mean on St
2 instead of the bandpass filter. Both approaches gave similar 

variability at intraseasonal and seasonal timescales and we opted for the bandpass filter. 

(c) Final estimate 

 (6) The interannual component (Tt) is estimated by repeating step (3) to the seasonally 

adjusted series (Zt 
3). 
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(7) The seasonal component (St) is obtained by subtracting  (It
1) from (St

2). 

(8) The intraseasonal component (It) is the sum of the components (It
1) and (Xt - St - Tt). 

The seasonal cycle (St) is defined locally and allows variations in amplitude from year 

to year, which helps to diagnose the stability of the seasonal cycle (Vantrepotte and Melin, 

2009). The interannual component (Tt) captures variability with periodicity greater than 8 

months, while the intraseasonal component captures variability with periodicity between 8 

(the temporal resolution of the dataset) and 90 days and all the irregular variability beyond 

periodicities of 90 days. We should note that the long-term trend was not removed before 

decomposition and is thus part of the interannual component.  

Method 2, with a repeated mean seasonal signal: This method is adapted from Keerthi 

et al. (2016, 2017). In this approach, the seasonal signal is computed as the sum of the first 4 

harmonics, and the coefficients of the 4 harmonics are computed for each grid cell with a 

least square fit to the full time series. Intraseasonal signals are then isolated using an 8 to 88-

day bandpass filtering based on Fourier transform. Interannual anomalies are then calculated 

by removing the seasonal and intraseasonal signals.  

As an illustration, Figure 2 shows the decomposition of the ocean color SChl time 

series at the BOUSSOLE site into its seasonal, interannual and intraseasonal components by 

the two methods. By construction, the largest differences between the two decomposition 

methods appear in the interannual component because it contains interannual variations of the 

seasonal cycle in the second method but not in the first. In addition, the Fourier spectrum of 

the signals produced by the two decomposition methods (Fig. 3) nicely illustrates that the 

first method separates better than the second the frequencies of interannual fluctuations from 

those of the seasonal and intraseasonal signals. Importantly, the intraseasonal signals 

obtained with the two methods are very similar with a correlation of 0.9, which shows that 

the extraction of this signal marginally depends on the choice made to extract the interannual 

signal. The main difference between the two intraseasonal signals concerns periodicities 

larger than 90 days, which have been filtered out by construction in the second method but 

remain in the first method. 
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3.5 Total variance partitioning 

The total variance var(Xt) of the original time series can be written as 

var(Xt)=var(St)+var(It)+var(Tt)+2cov(St, It, Tt), where var(St), var(It) and var(Tt) represent the 

variances associated with the seasonal, intraseasonal and interannual components, 

respectively. Cov(St, It, Tt) is the covariance of the seasonal, intraseasonal and interannual 

components. This term makes up only a few percent of the total variance and is not discussed 

further in the rest of the study. The relative contribution of each component to the total signal 

is expressed as a percentage.  

3.6 Spatial scales of SChl variability 

To quantify the spatial extension of the patterns of variability for each timescale, the 

decomposed time series at a given grid cell is cross-correlated with the corresponding time 

series at all other grid cells in the basin. This provides a cross-correlation map for each 

timescale and each grid cell. We then computed the number of grid cells for which the cross-

correlation is larger than a threshold value of 0.8 and the area that they cover. This threshold 

is to some extent arbitrary, but our results are weakly sensitive for values ranging from 0.75 

to 0.85 (Supplementary Fig. S4). We define the spatial scale of variability for that particular 

timescale, threshold and grid cell as the square root of this area, expressed in km. This space 

scale should be viewed as the distance over which the intraseasonal (resp., the seasonal or 

interannual) signal remains self-coherent (in the limit of the chosen cross-correlation 

threshold value). 

3.7 Influence of intraseasonal SChl variability at large spatial scale 

To evaluate the large-scale imprint of intraseasonal variance, the gridded intraseasonal 

time series were filtered in space to retain only the spatial scales larger than a given threshold. 

We varied the threshold between 50 km and 500 km. We adopted the method in Keerthi et al. 

(2013, 2016), an iterative application of the heat diffusion equation described in Weaver and 

Courtier (2001). This analysis allowed us to evaluate how much of the intraseasonal variance 

was still present at scales above 50 km, and how fast it decreased between 50 km and 500 

km.  

4. Results 
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In order to evaluate the ability of the satellite product to capture intraseasonal SChl 

variations, we first present the temporal scale separation at a single station located in the NW 

bloom region (the BOUSSOLE mooring) where high-frequency in-situ data are also available 

over the 2007-2017 period. We then extend the analysis over the entire basin and a longer 

time period (1998-2017), and evaluate the corresponding spatial scales, using the satellite 

product alone. Finally we attempt to contextualize these results by repeating the same 

analysis to the MxLD derived from an oceanic reanalysis.  

4.1 Characterizing and comparing satellite and in-situ SChl variability at the 

BOUSSOLE mooring  

The BOUSSOLE mooring is located at the northeastern end of the NW bloom regime 

(star on Fig. 1a). The blue curve on Figure 4a displays the in-situ BOUSSOLE time series 

over the 2007-2017 period. As reported before (Lavigne et al., 2013; Mayot et al., 2016; 

Salgado-Hernanz et al., 2019), the in-situ SChl time series exhibits an intense bloom in spring 

(between March and April), with strong year-to-year variations in amplitude and peak timing. 

This time series also shows a clear decreasing linear trend of ~ -0.01mg m-3 y-1 over this time 

period, in line with a previous estimate by Salgado-Hernanz et al. (2019) performed over 

1998-2014 and based on the MedOC4-CCI product. At the BOUSSOLE mooring, seasonal 

variations explain ~60-70% of the total SChl variance, the remaining being explained by 

intraseasonal (~20-30%) and interannual (~5-10%) variations.  

The associated seasonal component (blue curve on Fig. 4b) is typical of the bloom 

regime, with a strong peak in spring followed by low and stable SChl concentrations in 

summer. A second more modest peak occurs in fall, which is then interrupted in winter. The 

amplitude and phenology of this seasonal SChl signal also display significant year-to-year 

modulations. In addition to a decreasing trend in the spring peak amplitude, the secondary 

peak in fall evident prior to 2015 is not detected after that year. At interannual timescales 

(blue curve Fig. 4c), the variability is characterized by alternating periods of positive and 

negative anomalies of modest amplitude. At intraseasonal timescales (blue curve Fig. 4d), the 

signal is relatively large and shows a wide spectrum of periods, ranging from a couple of 

weeks to several months (Fig. 3d). Intraseasonal fluctuations generally exhibit their largest 

variations during the spring bloom, and during years with a strong bloom. 
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Figure 4 also allows comparing in-situ SChl time evolution (blue curve) with satellite 

retrieved concentrations (red curve) over their overlapping time period. The total signals of 

the two time series agree generally well in terms of phasing and year-to-year variations in the 

peak amplitude, with an overall correlation of 0.87, significant at 90% (Fig. 4a). This 

agreement between the two data sources occurs at all timescales (Fig. 4b-d), although it is 

larger at seasonal (r~0.97) than at interannual (r~0.8) and intraseasonal (r~0.73) timescales. 

The comparatively poorer agreement at intraseasonal timescales is however expected because 

the 8-day composites of both time series are biased by different time distributions of missing 

data. This could also ensue from the constant coefficient used to compare in-situ fluorescence 

to satellite SChl. The overall good agreement between the two independent datasets however 

gives us confidence that the satellite product reliably captures the time evolution of SChl 

down to the intraseasonal timescales at the BOUSSOLE station, and allows us to confidently 

use the merged satellite SChl to investigate SChl variability at seasonal, interannual and 

intraseasonal timescales in the Mediterranean Sea, where the data coverage is close to that of 

BOUSSOLE (Fig. 1d). 

 

4.2 Spatio-temporal characterization of intraseasonal SChl variations at the scale 

of the basin 

The relative contribution of intraseasonal fluctuations to the total SChl variance is 

compared to the contribution of seasonal and interannual fluctuations (Fig. 5a-c). As 

expected, seasonal variations contribute the most to the total variability, with a contribution 

ranging from 50% in the northwestern part to 90% in the southeastern part. The second 

contributor to the total variance is the intraseasonal component, with a contribution ranging 

from 10% in the interior of the basin to 50% near the shore, in the NW region, in the Rhodes 

Gyre and in the western Alboran Sea. Finally, interannual variations are the smallest 

contributor to the total variance (from less than 10 to 20%). An important result for the 

present study is that the SChl variance in the core of the NW bloom region is explained 

almost equally by seasonal (~45%) and intraseasonal (~45%) variations, with interannual 

variability accounting for the remaining 10%. In contrast, over most oligotrophic regions, the 

weaker SChl variance is explained mainly by seasonal variations. An exception is the Rhodes 

Gyre where the seasonal cycle explains ~50% of the total signal while the intraseasonal and 

interannual variations equally contributes to the remaining 50%. Along the western Alboran 
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Sea, near to the Gibraltar strait, where the climatological SChl values are large (Fig. 1a), 

intraseasonal variability explains around 60-70% of the total SChl variance while the 

seasonal cycle explains only 20-30% of it. Also, as already noted at the BOUSSOLE 

mooring, we can note that the standard deviation of intraseasonal SChl variations is larger in 

spring than during the rest of the year (Supplementary Fig. S3).  

The spatial scales of intraseasonal SChl variations are further compared to those of 

seasonal and interannual variations (Fig. 5d-f). These spatial scales represent the distance 

over which the signal at a given time scale remains self-coherent and reflect the spatial scale 

of the mechanisms driving these intraseasonal variations. Broadly speaking, there is a general 

decrease of the spatial scales associated with seasonal (> 400km), interannual (~100-400 km) 

and intraseasonal (~20-100 km) variability. This is consistent with the fact that seasonality in 

SChl is a wide regional phenomenon, while more local processes drive intraseasonal 

fluctuations. Also interestingly, the scale of interannual variability is smaller than that of 

seasonal variability, which is not something we anticipated. 

The spatial scales associated with seasonal variations (Fig. 5d) exceed 1000km over 

most of the Mediterranean Sea, i.e. they have a scale close to the scale of the basin (1760 km 

wide by 4510 km long). A notable exception is the NW bloom region where the seasonal 

spatial scale (~400 km) is close to the scale of the bloom region itself (550 km wide by 880 

km long). This clear separation is consistent with the previous identifications of the ‘bloom’ 

and ‘no-bloom’ bioregions based on the SChl phenology (D'Ortenzio and d'Alcala, 2009; 

Lavigne et al., 2013; Fommervault et al., 2015; Mayot et al., 2016).  

At intraseasonal timescales (Fig. 5f and Supplementary Fig. S4), the spatial scales are 

wider in the NW bloom region (~100km +/- 40 km) than in the rest of the basin (~30km +/- 

10 km). The Mediterranean Sea is prone to intense mesoscale activity (Fernandez et al., 

2005), with a rather small Rossby radius (~10km) and intense mesoscale eddies with a 20-30 

km radius (Pinardi and Masetti, 2000; Escudier et al., 2016). The spatial scales of the 

intraseasonal variability in the oligotrophic part of the basin (~30km) are consistent with the 

hypothesis that the nutrient supply induced by mesoscale dynamics may reach the surface and 

sustain intraseasonal SChl variability there (i.e. Levy et al., 2012, 2018; McGillicuddy and 

Dennis, 2016; Fommervault et al., 2015).  

In the bloom region, however, the scales are too large to be related to mesoscale 

processes alone. They are closer to the scale of the synoptic atmospheric variability related to 
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Mistral and Tramontane winds that frequently blow over the region (Bernadallo et al., 2012; 

Marra et al., 2019; Gaertner et al., 2016). These cold and dry winds are associated with large 

sensible and latent heat fluxes and occur as strong storms that last for a few days (Mertens 

and Schott, 1998; Leaman and Schott, 1991; Bernadallo et al., 2012). They enhance surface 

cooling over this region and generate cold patches of roughly 100km, i.e. about the spatial 

scales of intraseasonal SChl variability (Madec et al., 1996, Marshall and Schott, 1999). Such 

intense wind bursts and the associated cooling erode the near surface stratification, leading to 

deeper vertical mixing which limits phytoplankton growth but also resupplies the surface 

with nutrients (Leaman and Schott, 1991; Mertens and Schott, 1998). Thus, spatial scale 

analysis suggests that intraseasonal variability of SChl could be driven by these wind bursts 

over the bloom region.  

At interannual timescales (Fig. 5e), the spatial scales are more homogeneous and do 

not show any clear regional pattern. The 100-400 km scale range suggests a relationship to 

the scales of the mean circulation and hydrology (Robinson et al., 2001; Testor et al., 2005; 

Pascual et al., 2007; Bosse et al., 2015). In the Mediterranean Sea, the general circulation is 

structured in sub-basin scale gyres of diameter 200-350 km (Robinson et al., 2001), driven by 

the wind and heat fluxes forcing, and locked by the topography (Pinardi et al., 1997; Molcard 

et al., 2002; D’Ortenzio and Prieur, 2012). Interannual variations in the structure and intensity 

of the wind forcing drive important interannual variations in the surface circulation (Pinardi 

et al., 1997; Molcard et al., 2002; Demirov and Pinardi, 2002), which has an impact on 

surface water characteristics, and consequently drives interannual anomalies in SChl (Olita et 

al., 2011; Volpe et al., 2012).   

To quantify the influence of intraseasonal variations over larger spatial scales, Figure 

6 estimates how much of the intraseasonal variance remains for scales larger than a given 

threshold, over the range 50-500 km. This analysis shows the decrease in total intraseasonal 

variance at increasing scale of influence. Both in the bloom and no-bloom regions, there is, as 

expected, a sharp decrease over the first 200 km (Fig. 6b). Nevertheless, over large regions, 

more than 40% of the variance is retained after filtering the intraseasonal signal at 200 km 

(Fig. 6a).   

4.3 Relationship with the mixing-layer depth variability 
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In the Mediterranean Sea, seasonal variations in SChl are known to be driven by 

seasonal variations in MxLD, both in the bloom region and in the more oligotrophic regions 

(Levy et al., 1998; D’Ortenzio et al., 2005; Marty and Chiavérini, 2010; Lazzari et al., 2012; 

Lavigne et al., 2013; Houpert et al., 2015, 2016). Thus to contextualize the SChl analysis, we 

compared the variability in SChl with the variability in MxLD at the three timescales. Our 

intention was to infer whether or not the link between SChl and MxLD at seasonal timescale 

holds for the other timescales, and to what extent they may explain intraseasonal fluctuations. 

The limit of this approach is that the best available MxLD product is derived from a model 

reanalysis, which performs well in terms of large-scale patterns and captures some of the 

observed high-frequency variability, but could not be satisfactorily evaluated against in-situ 

data for MxLD. It should also be noted that MxLD and SChl data are not analyzed over the 

same period, but restricting the SChl analysis over the period of overlap with the MxLD data 

does not affect the main results for SChl (see Supplementary Fig. S2).  

The contribution of the seasonal, interannual and intraseasonal variability to the total 

MxLD variance and the respective spatial scales involved are shown in Figure 7. 

Interestingly, the main patterns are similar for SChl and for MxLD: The seasonal signal 

dominates the total MxLD variations over most of the basin. It has the largest spatial scale, 

with a clear scale separation between the bloom region and the rest of the basin, highlighting 

two contrasted phenologies. Interannual variability is small in amplitude and has intermediate 

scales; Intraseasonal variability has an intermediate amplitude, which is maximum in the NW 

bloom region, and exhibits the smallest spatial scales of the three timescales of variability 

analyzed here.  

There are however a few notable differences. First, there is a large interannual 

variability in MxLD in the deep convection zone of the NW bloom region, which reaches 

~20-30% of the total variability. This is consistent with previous studies, which highlighted 

strong year-to-year variations in the extent and timing of deep convection (Mertens and 

Schott, 1998; Houpert et al., 2016; Mayot et al., 2016). This maximum in the interannual 

MxLD variance in the NW bloom region is not observed for SChl, confirming previous 

findings that interannual variations in the depth of convection do not drive substantial 

interannual variations of the bloom (Lavigne et al., 2013).  

Second, in the no-bloom region, intraseasonal variations of the MxLD represent a 

larger part of its total variability than intraseasonal variations of the SChl. This suggests that 
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intraseasonal variations of the MxLD remain generally too shallow to reach the nutricline 

there, as already suggested in the literature (Siokou-Frangou et al., 2010; Moutin & 

Raimbault, 2002; Volpe et al., 2012). For example, along the Ionian and Levantine basin, the 

maximum winter MxLD is 82 m and 125m respectively, while the mean winter nitracline is 

located at around 100m and 145m respectively (Fommervault et al., 2015).  

In addition, the spatial scales associated with intraseasonal variations of the MxLD 

are notably larger than those associated with the intraseasonal variations of SChl in most of 

the basin (100-400 km for MxLD versus 30-50 km for SChl), except in the NW bloom region 

where the opposite occurs (30-50 km for MxLD versus 60-100 km for SChl) (Fig. 5f, 7f). 

This discrepancy in scales suggests that intraseasonal variability in SChl and MxLD might 

not be connected. We can also note that in the NW bloom region, the maximum intraseasonal 

variability in SChl and MxLD does not occur at the same time: It occurs in spring for SChl 

and in winter for MxLD (Supplementary Fig. S3).  

This additional analysis confirms the important role of the MxLD in driving seasonal 

variations of SChl and also illustrates that interannual variability in SChl is not driven by 

interannual variability in MxLD. It has not allowed us to identify a connection between 

intraseasonal variability in SChl and intraseasonal variability in MxLD. This aspect is further 

discussed below. 

5. Summary and discussion 

5.1 Summary 

Our analysis based on two decades of merged ocean color data confirms previous 

findings regarding seasonal and interannual variability in SChl in the Mediterranean Sea, and 

brings new insight regarding intraseasonal SChl variability and its connection with seasonal 

and interannual fluctuations. As is the case in most ocean regions (Demarcq et al., 2012), 

seasonal fluctuations are the main contributor of SChl variability in the Mediterranean Sea 

(D'Ortenzio and d'Alcala, 2009; Salgado-Hernanz et al., 2019), and the physical processes 

driving this variability are reasonably well understood (Bosc et al., 2004; D’Ortenzio and 

d’Alcala, 2009; Lavigne et al., 2013; D’Ortenzio et al., 2014; Mayot et al., 2016; Houpert al., 

2015, 2016). Our analyses on SChl seasonal variations are broadly consistent with these 

previous studies and put them in perspective with the spatio-temporal variability of the 

mixing layer. The spatial scales of SChl and MxLD at seasonal timescales (Fig. 5d and 7d) 
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are similar. They both reveal a bi-modal spatial pattern, with a bloom region characterized by 

its own, relatively small spatial scale (400 km), embedded in a large ‘no-bloom’ region 

(>1000 km). The boundary between the two regions is sharp and weakly sensitive to the 

threshold used to determine the spatial scale of correlation (Supplementary Figs. S4-S5). It 

reflects that the seasonal cycle of SChl is well auto-correlated within each region, but poorly 

correlated from one region to the other. This is because the seasonal phasing of SChl differs 

in the bloom and no-bloom regimes, with a peak in spring in the bloom region driven by the 

shoaling of the MxLD after deep winter convection, and a peak in winter in the no-bloom 

regime driven by a moderate deepening of the MxLD (Lavigne et al., 2013). D’Ortenzio and 

d’Alcala (2009) identified three different ‘no-bloom’ regimes in the Mediterranean Sea and a 

wider transition between the bloom and no-bloom regions. Their results were based on a 

cluster analysis applied to a climatological time series constructed from ten years of satellite 

SChl data. These three no-bloom regions were organized along the East-West productivity 

gradient (their Fig. 4) and reflected differences in amplitude rather than in the phenology.  

While our analysis confirms that seasonal variations strongly dominate SChl 

variability in the oligotrophic ‘no-bloom’ regime, which covers most of the Mediterranean 

Sea (e.g. D’Ortenzio and d’Alcala, 2009; Demarcq et al., 2012). It however reveals that 

intraseasonal SChl variability has similar amplitude to that of SChl seasonal variations in the 

‘bloom’ regime, which is confined to the northwest part of the basin. Interannual variations 

are everywhere weak in amplitude, as they represent between less than 10 to at most 20% of 

the total SChl variability (Fig. 5), confirming the findings of previous studies (e.g., 

Basterretxea et al., 2018).  

In the wide no-bloom region, the spatial scales of the small intraseasonal SChl 

variations are similar to those of oceanic mesoscale transport. This suggests that intraseasonal 

SChl fluctuations are due to intermittent nutrient supply driven by small-scale phenomena 

such as fronts and mesoscale eddies (Lévy et al., 2012; McGillicuddy and Dennis, 2016). 

Such intermittent supply is a common feature in oligotrophic regions (Doney et al., 2003), 

and its impact on SChl depends on the respective depth of the nutricline and of the vertical 

circulation associated with the small-scale dynamical features (Levy et al., 2018). We also 

note that intraseasonal SChl variations in the no-bloom region are not connected to 

intraseasonal variations of the MxLD, which have larger spatial scales. This is also consistent 
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with the hypothesis that intraseasonal SChl variability is linked to mesoscale processes, and 

therefore to advective inputs of nutrients rather than detrainment or diffusive supplies.  

In the most productive NW ‘bloom’ regime, almost half of the SChl variations occur 

at intraseasonal timescales. Our results indicate that they are spatially coherent over a spatial 

scale (~100 km) larger than the mesoscale (~20 km) but smaller than the bloom area itself 

(~400 km). A hypothesis to explain these strong SChl variations is that they could be related 

to variability in vertical mixing, driven by mechanical stress and buoyancy forcing associated 

with the passage of intermittent wind bursts. These events are frequent in this region (Mertens 

and Schott, 1998; Leaman and Schott, 1991; Bernadallo et al., 2012), and have spatial scales 

that are consistent with this hypothesis. However, with the MxLD product that we had, we 

could not identify any link between intraseasonal SChl and MxLD variations in the bloom 

region; In particular intraseasonal variations have larger spatial scales for SChl (60-100 km) 

than for MxLD (30-50 km). This difference is partially explained by the different time at 

which maximum intraseasonal variations occur, in winter for the MxLD and in spring for 

SChl (Supplementary Fig. S3). The large intraseasonal variability of the MxLD in winter is 

well established and is sustained by atmospheric forcing events that last for a few days 

(Marshall and Schott, 1999; Houpert et al., 2016; Waldman et al., 2017; Testor et al., 2018). 

However, since SChl is very small in winter due to strong light limitation and dilution, its 

absolute variability in response to such forcing remains small. In contrast in spring, SChl is 

high and highly sensitive to small fluctuations of the MxLD. Modeling studies have 

suggested that the spatial scales of MxLD and SChl are both extremely variable during the 

bloom (Figs 8-10 in Lévy et al., 2005). Furthermore, as previously mentioned, we have not 

been able to properly evaluate the performance of the reanalysis in correctly reproducing the 

intraseasonal fluctuations of the MxLD during the bloom, which could therefore be of 

insufficient quality. This hinders our ability to connect MxLD and SChl intraseasonal 

variations statistically with the best data currently available. Dedicated investigation will be 

necessary to fully understand the physical processes driving intraseasonal fluctuations of 

SChl during the spring bloom. To this purpose, a modeling approach may prove to be very 

useful, as it would allow to overcome the scarcity of the data at the appropriate spatial and 

temporal scales. 

Our analysis finally indicates that intraseasonal variability is not only a local 

phenomenon but can be felt over larger spatial scales. This influence of intraseasonal 
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variations at spatial scales that are significantly larger than the auto-correlation length scale 

could possibly highlight scale interactions that are not fully understood, such as the remote 

and cumulative effect of mesoscale eddies and wind/eddy interactions (Penduff et al., 2011; 

Lévy et al., 2014).  

Together, seasonal and intraseasonal variations account for most of the time variation, 

with less than 10% of the variability occurring at interannual timescales. This relatively small 

proportion of the SChl variance that is explained by the interannual (>1 year) signal may 

seem surprising given the strong year-to-year variations that are evident in any individual 

SChl time series (e.g., Fig. 2). This reflects that the variations that are seen in the timeseries 

are not interannual but are in fact intraseasonal, as confirmed by our analysis. These results 

are similar to those of Salgado-Hernanz et al. (2019) who employed a similar methodology 

with a different satellite merged product. The predominance of intraseasonal variability over 

interannual variability in the Mediterranean Sea is not specific to SChl and has also been 

reported for sea surface temperature (Zveryaev, 2015).  

5.2 Caveats 

The quantification of intraseasonal fluctuations of SChl in the ocean is impeded by 

two main difficulties. The first is the availability of data at the appropriate time scale, and the 

second is the method used to extract the intraseasonal signal. Regarding the first issue, we 

used a widely distributed ocean color product (OC-CCI), and assessed its skills at capturing 

the intraseasonal signal by comparing it to mooring data at the BOUSSOLE station. This 

comparison convinced us that the satellite product could be reliably used to study time 

variations, at least down to the resolution of the merged product, i.e. 8 days. This conclusion 

holds for the Mediterranean basin where cloud cover is rather weak, but the use of satellite 

data could be more problematic in more cloudy regions. We should bear in mind, however, 

that the comparison implied a certain number of hypothesis, in particular the conversion of 

in-situ fluorescence to chlorophyll using a constant ratio – a method previously validated by 

Lavigne et al. (2012), and the use of an ocean color algorithm that has been shown to 

overestimate low chlorophyll values in the Mediterranean Sea (Volpe et al., 2012). The 

quantification of the strength of intraseasonal SChl fluctuations in the Mediterranean Sea 

previously computed by Salgado-Hernanz et al. (2019) using a satellite product obtained 

from a regional algorithm (Med-OC4) was very similar to ours, highlighting that the small 

bias of OC-CCI compared to Med-OC4 only marginally affects our results.  
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The second issue lies in the definition of intraseasonal variability and on the 

methodology used to extract it from the total signal. This is especially critical for SChl as the 

strength of intraseasonal variability can reach that of seasonal variations. In order to extract 

the intraseasonal signal from seasonal and interannual fluctuations, we chose an approach 

that allows year-to-year variations of the seasonal cycle. This choice was dictated by the fact 

that the seasonal phenology of SChl differed between years (the number and the timing of the 

peaks). By construction, this method gives less weight to interannual fluctuations. 

Quantification of the respective weights with a second method where the seasonal cycle 

strictly repeats itself from year to year yields as expected slightly stronger interannual 

fluctuations and weaker seasonal and intraseasonal variations (Supplementary Fig. S6), but 

without impacting our main conclusions. The small differences are mostly due to variations at 

frequencies comprised between 3 and 6 months, which are not well subtracted from 

the interannual signal with the second method (Fig. 3).  

We should also note that variations in surface Chlorophyll might not always reflect 

variations in depth-integrated biomass. In the Mediterranean Sea, the vertical distribution of 

chlorophyll is characterized by a subsurface maximum when conditions are oligotrophic, 

which is the case during summer in the bloom region and during most of the year in the no-

bloom regions (i.e., Lavigne et al., 2012). This subsurface maximum is located near the depth 

of the nutricline, which is often well below the base of mixed layer (Cullen, 2015). As a 

consequence, the intraseasonal variability of this subsurface chlorophyll maximum may 

significantly differ from that of Surface Chlorophyll both in amplitude and in phenology. In 

particular, we suspect this variability to be stronger than at the surface (Estrada, 1985; Latasa 

et al., 1992). Unfortunately, the lack of subsurface data at intraseasonal timescales precludes 

such an analysis.  

5.3 Concluding remarks 

Overall, our study suggests that intraseasonal variability might represent a significant 

proportion of SChl variability over other bloom regions of the global ocean, and that 

identifying and studying the processes that drive this variability are crucial to understand the 

variability of ocean productivity, including the long-term trends. Furthermore, more work is 

needed to transpose our results on SChl variability to variability in phytoplankton 

productivity, which is more relevant to ocean biogeochemical cycles than SChl (Boss and 

Behrenfeld, 2010; Behrenfeld, 2010).  
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Figure 1: (a) Annual mean surface chlorophyll (SChl) distribution over the period 1998-2017, using 

ESA OC-CCI SChl (b) Mean winter (Dec-Jan-Feb) Mixing layer depth (MxLD) over the period 

1998-2012, using MxLD data from the Mercator reanalysis MEDRYS1V2 (c) Normalized SChl 

variance (standard deviation divided by the mean of SChl) and (d) ESA OC-CCI SChl data coverage 

(percentage of time steps with data in each pixel with respect to the total number of time steps). The 

BOUSSOLE mooring location is marked by a star in panel (a). The 70% contour is highlighted in 

panel (c). 
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Figure 2: Decomposition of the ESA OC-CCI SChl time series at the 1°x1° BOUSSOLE mooring 

box (a, e) into seasonal (b, f), interannual (c, g) and intraseasonal (d, h) components. Method 1 (left 

panels) is used in this paper and is characterized by a seasonal cycle that is allowed to vary from year 

to year. Method 2 (right panels) is shown for comparison and uses a seasonally repeating seasonal 

cycle. For clarity, only the period from 2004 to 2009 is shown (the full time series shown in 

supplementary Figure S2). Correlations between the two methods are indicated on the right panels and 

are for the full time series (1998 to 2017). The pink shading highlights the March-April period, which 

is when the peak of the spring bloom occurs.  
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Figure 3: Power Spectrum of the total, seasonal, interannual and intraseasonal ESA OC-CCI SChl 

time series at the 1°x1° BOUSSOLE mooring box from 1998-2017 obtained with a decomposition 

method characterized by a seasonal cycle that is allowed to vary from year to year (Method 1, b,c,d, 

used in this paper) and with another method shown for comparison (Method 2, e,f,g, that uses a 

seasonally repeating seasonal cycle). The time series corresponding to these power spectra are shown 

in Figure 2 and supplementary Figure S1. 
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 Figure 4: Comparison of the ESA OC-CCI (red curves) SChl time series (a) and its decomposition 

into seasonal (b), interannual (c) and intraseasonal (d) components with in-situ data at the 

BOUSSOLE mooring (blue curves). Gaps in the in-situ data are due to instrumental problems. 

Correlation between the in-situ and satellite SChl components are given in each panel. Note that 

different scales on the y-axis are used for the total, seasonal, interannual and intraseasonal signals.  
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Figure 5:  (First Column) Percentage of the total SChl variance explained by its (a) seasonal, (b) 

interannual and (c) intraseasonal components. (Second Column) Spatial scales associated to (d) 

seasonal, (e) interannual and (f) intraseasonal SChl components.  
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Figure 6: (a) Percentage of the intraseasonal SChl variance that remains after applying a 200 km 

smoothing filter to the intraseasonal signal. (b) Percentage of the intraseasonal SChl variance that 

remains after applying a spatial smoothing filter of varying scale to the intraseasonal signal, averaged 

over the bloom region (thick curve) and the no bloom region (dashed curve). The non-smoothed data 

is represented as the 0 km smoothing. The bloom no-bloom regions are indicated in panel a.  
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 Figure 7: (First Column) Percentage of the total Mixing-layer depth (MxLD) variance explained by 

its (a) seasonal, (b) interannual and (c) intraseasonal components. (Second Column) Spatial scales 

associated to (d) seasonal, (e) interannual and (f) intraseasonal MxLD components.  

 

 

 

 

 

 

 


