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Effects of solar irradiance noise 
on a complex marine trophic web
Roberto Grimaudo1, Paolo Lazzari2*, Cosimo Solidoro2 & Davide Valenti1

The analysis of experimental data of the solar irradiance, collected on the marine surface, clearly 
highlights the intrinsic stochasticity of such an environmental parameter. Given this result, effects 
of randomly fluctuating irradiance on the population dynamics of a marine ecosystem are studied 
on the basis of the stochastic 0-dimensional biogeochemical flux model. The noisy fluctuations of 
the irradiance are formally described as a multiplicative Ornstein-Uhlenbeck process, that is a self-
correlated Gaussian noise. Nonmonotonic behaviours of the variance of the marine populations’ 
biomass are found with respect to the intensity and the autocorrelation time of the noise source, 
manifesting a noise-induced transition of the ecosystem to an out-of-equilibrium steady state. 
Moreover, evidence of noise-induced effects on the organic carbon cycling processes underlying 
the food web dynamics are highlighted. The reported results clearly show the profound impact the 
stochastic environmental variables can have on both the populations and the biogeochemistry at the 
basis of a marine trophic network.

In the political management of current scientific and social issues such as climate change and ecosystem  health1–3, 
a pivotal role is played by the monitoring of the state of seas and  oceans4. One of the most prominent aspects 
which characterize oceans and seas consists in their capability of absorbing atmospheric CO2 and consequently 
mitigating global warming. Thus, the results obtained by studying the lower trophic level dynamics and marine 
biogeochemical processes on the basis of marine ecosystem models serves as a basic reference point.

Physical, biogeochemical, and ecological properties of marine ecosystems can be investigated through multi-
nutrient and multi-plankton biogeochemical models, like  BFM5,  ERSEM6,  PISCES7,  ERGOM8, and  DARWIN9. 
In our study we adopt a stochastic version of the BFM, where random fluctuating processes affecting the envi-
ronmental variables are taken into account. The BFM is exploited in several fields of application, ranging from 
short-term  forecasting10,11, ocean  acidification12 and climate  change13,14, to process  studies15–17, biogeochemical 
 cycling18 and carbon  sequestration19.

The need of considering noise sources in the modeling of natural systems stems from their unavoidable 
interaction with the surrounding environment, which acts on the systems through not only deterministic but 
also stochastic “forces”. Random fluctuations are often responsible for the emergence of ordered phenomena 
from disordered dynamics. Such subtle mechanisms thus turn out to be fundamental in determining dynamic 
properties of chaotic systems belonging to all length scales, from microscopic physical systems like  glasses20,21 to 
macroscopic ecological  systems22. Noise can induce intriguing and counterintuitive dynamical effects in living 
systems such as stochastic  resonance22–26, noise enhanced  stability27,28, and noise delayed  extinction29, otherwise 
absent in deterministic dynamics. Moreover, several examples in climate  science30 population  dynamics31,32, 
 ecology33,  epidemiology34,35,  bioinformatics36,37, neuroscience and  biology38,39, indicate that noise acts not only 
as a source of disorder, but also as an essential feature of the dynamics of natural systems.

The key-ingredient of these unpredictable effects is the simultaneous presence of nonlinear interactions and 
random fluctuations, which characterizes natural complex systems. Marine ecosystems indeed are characterized 
by nonlinear  interactions40 as well as by both deterministic forcings (daily and seasonal cycles)16,41,42 and random 
fluctuations of physical  variables29,31–33,35,39,43,44 such as  temperature45,46. The combination of the two factors can 
alter the net growth rate of the phytoplankton biomass production  mechanism47 and drive a phytoplankton 
system from a stability condition to another and vice-versa48,49.

Such examples demonstrate that, to correctly and exhaustively grasp experimental features of natural systems, 
the mathematical description cannot neglect the environmental random perturbations. Stochastic models can 
represent a powerful tool to reproduce the spatio-temporal evolution of marine ecosystems in a better agree-
ment with field data, shedding a new light on the hidden mechanisms which govern the dynamics of natural 
ecosystems, suggesting strategies and indicating possible solutions about urgent climatic issues. Stochastic models 
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for the climate, for example, provided a means of proving that human emissions of carbon dioxide cause the 
increase of atmospheric  temperature50–52. In this sense, the separation of the deterministic signal (the large-scale 
dynamics of the climate) from the noise (the short-range changes in the weather) has been at the basis of meth-
ods developed for identifying particular features of human-induced effects in the analysed experimental  data53.

As for biogeochemical and ecological models, until now the attention has been mainly focused on the effects 
stemming from random temperature  fluctuations54–56. However, in ecological systems also light plays a funda-
mental role in driving their dynamics. To the best of our knowledge, what is reported in this paper is the first 
attempt to analyse the dynamic aspects related to the randomicity of the solar irradiance. This idea finds its 
root in the examination of experimental time series of the irradiance parameter which account for the intrinsic 
stochastic character of light.

In the present work, basing on previous  studies43,57–60, the stochastic character of light is taken into account by 
modeling the solar irradiance dynamics as a Brownian particle subject to a multiplicative self-correlated Gaussian 
noise. The zero-dimensional stochastic biogeochemical flux model (SBFM)54, then, simulates a planktonic food 
web made of nine populations under the influence of a randomly fluctuating irradiance. Moreover, it accounts 
for biogeochemical cycles of carbon, phosphorus, nitrogen and silicate as well as the evolution of dissolved and 
particulate organic matter.

The paper aims at showing that irradiance parameter does have an intrinsic stochastic component, and that 
such a stochasticity has a significant impact on the dynamics of plankton community and the resulting structure. 
Our results demonstrate that the coefficient of variation (the ratio of the standard deviation to the mean value 
over the ensemble of realizations) in the stochastic process reaches a maximum in correspondence to critical 
values of  the random fluctuations’ intensity for all the bio-variables. Irradiance random fluctuations mainly affect 
bio-physical processes related to plankton dynamics (e.g., photosynthesis) but such ‘localized’ noisy perturba-
tions on the lowest trophic levels can be reverberated, and indirectly affect the highest levels too. The analysis 
of the probability density functions reveals the ergodic character of the network dynamics, as well as the noise-
induced generation of an out-of-equilibrium steady state, i.e. of a dissipative state sustained by the existence of a 
continuous series of perturbations, filtered by the nonlinear dynamics describing the plankton response to light 
intensity. This last aspect particularly shows how the interplay between random and deterministic fluctuations 
of the environmental parameters is fundamental in determining the basic dynamic features of complex systems 
like a marine ecosystem.

Results
This section is devoted to show results and to highlight eventual effects of the interplay between the nonlinearity 
characterizing the system dynamics and the presence of noisy fluctuations for the irradiance variable.

Analysis of experimental data. The need of taking into account noisy fluctuations of such an environ-
mental variable is well demonstrated in Fig. 1. In the first panel (a) the experimental time behaviour of the 
irradiance is shown. This noisy curve is based on the experimental data (purple points) of the Boussole buoy 
located in the Gulf of Lion, collected over a period of nine years, precisely from 2004 to 2013. The time series 

Figure 1.  (a) Experimental data (purple points) of the stochastic solar irradiance collected by the Boussole 
buoy in a time-window of 9 years (2004-2013); the yellow points are the data generated by the OASIM model 
used to fill the gaps present in the experimental time-series due to malfunctioning of the buoy. (b) Daily 
(black points) and three-month (red points) running mean of the light curve in panel (a). (c) Irradiance 
noisy fluctuations (INF), obtained by subtracting the three-month running mean curve (3MRM) from the 
daily running mean one (DRM) and normalizing with respect to the mean value of 3MRM ( 3MRM ), namely 
INF = (DRM − 3MRM)/3MRM ; the red line represents the mean value of such fluctuations. Data already 
presented and validated  in61.
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of the experimental data presents quite a few gaps in time due to the malfunction of the buoy. This aspect has 
been remedied by merging the experimental data with those of the OASIM model validated for the Boussole 
 site61 (yellow points). The latter is a multispectral atmospheric radiative transfer model that is in turn forced 
by experimental-model data based on ECMWF ERAINTERIM reanalyses which provide, for example, cloud 
cover data. The radiative model is partly stochastic since it considers the effects stemming from the presence 
of clouds, averaged along a single day (this explains why the yellow points are slightly less scattered). We see 
that the OASIM model accurately reproduces the profile which emerges from the experimental data. Further, 
we stress that the experimental data are only used in this initial analysis. In the biogeochemical simulations the 
irradiance signal is fully reconstructed starting from a realistic seasonal cycle combined with a range of differ-
ent random fluctuations, and the information from OASIM is not used. In the second panel (b) the daily (black 
points) as well as the three-month (red points) running mean of the experimental series are plotted. Figure 1c 
shows the irradiance noisy fluctuations (INF) which have been obtained by subtracting the three-month run-
ning mean curve (3MRM, red curve in Fig. 1b) from the daily running mean one (DRM, black curve in Fig. 1b) 
and normalizing with respect to the mean of the 3MRM ( 3MRM ), namely INF = (DRM − 3MRM)/3MRM . 
We see that a seasonal overall trend with higher oscillations during the winter time can be seen, implying that the 
characteristics of the noise may change over the year. Moreover, a slight imbalance between positive and nega-
tive values of the noisy fluctuations (that is, different values of the maximum fluctuation intensity) is present. 
The physical reason for the occurrence of such an aspect can be ascribed to the fact that the maximum value of 
solar irradiance corresponds to that measured during a sunny day. Conversely, the minimum level tends to zero 
corresponding to a dense darkness. While the former is close to the mean value of the solar irradiance (most of 
all in summer), the latter is much further away and then a natural asymmetry arises in the random fluctuations. 
However, it should be noted that, apart from the intense spikes, the asymmetry is not so pronounced, as proved 
by the mean value (red line in Fig. 1c) which is practically zero, namely 0.4% of the 3MRM . Therefore, basing on 
this last observation, to model the noise affecting the irradiance dynamics, as a first approximation we consider 
a symmetric Gaussian autocorrelated noise as described in the next subsection.

On the basis of such experimental results, we postulate the hypothesis that random fluctuations of light can-
not be neglected, most of all in the study of ecological systems where light profoundly determines the system 
dynamics, governing fundamental processes at the basis of of the food web.

Solar irradiance. The solar irradiance forcing is derived considering a deterministic seasonal oscillation 
combined with an Ornstein-Uhlenbeck process. The coefficient of variation (CV) of simulated light forcing, 
Fig. 2, CV = σ/µ ( µ and σ being mean value and standard deviation calculated over both time and numerical 
realizations), is shown for 231 D − τ pairs. D and τ represent the intensity of a Gaussian noise source and the 
auto-correlation time of the fluctuations, respectively (see Eqs. (2) and (3)).

Each pixel represents the mean value on time of CV calculated with respect to 1000 different stochastic 
realizations. It is easy to see the agreement between the results obtained from the numerical integration and 
the theoretical ones derivable from Eq. (5) by putting var{FL(0)} = 0 and t ≫ 1 , getting σ 2

L
= D/2τ . In Fig. 2, 

indeed, the maximum values of σ lie in the upper left part of the plot corresponding to small (high) values of 

Figure 2.  Coefficient of variation ( CV = σ/µ ) of irradiance resulting from numerical integration of model 
equations for 231 D − τ different scenarios.
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τ (D). As it is clear the values of D have been chosen in order to obtain a relative standard deviation ranging 
from 5%µ to 60%µ . We underline that, in this case, it is possible to interchangeably consider σ and CV since the 
dependence of CV on D and τ does not differ from that of σ (meaning that the dependence of σ is not altered by 
dividing by µ ) (results not shown).

Effects on population dynamics. In this section the noise-induced effects on the population dynamics 
are examined. The nine planktonic populations present a different qualitative behaviour of the CV, compared 
to that of the irradiance. In this case, the CV is characterized by a strong non-monotonic dependence on the 
parameter τ . This aspect can be appreciated in Fig. 3 where different curves of CV versus the time correlation 
parameter are shown for different fixed values of D.

The existence of a maximum value for CV can be appreciated for each species. Although the qualitative 
behaviour is the same for all strains, particular attention has to be payed on diatoms and nanoflagellates. All 
the other species, indeed, present a percent variation of standard deviation between 2% and 15% . In the case of 
nanoflagellates, instead, the D-dependent range is 20− 90% , while diatoms reach values over the 100% for the 
highest values of D. Therefore, these two species, in particular, and the whole system, in general, are extremely 
sensitive to the auto-correlation time which characterizes the noise.

We note that the different curves related to the different selected values of D approach the horizontal axis, 
tending asymptotically to vanish as τ increases. Such a behaviour can be explained by the fact that high values of 
τ give rise to a more correlated dynamics, so that τ → ∞ implies fully correlated time-behaviours corresponding 
to the deterministic case. In this instance, then, all the different realizations give the same results, making the 
standard deviation vanish. The same happens, independently of the value of τ , for low values of noise intensity 
for which the corresponding curves approach the same almost vanishing value (see orange, gray and yellow 

Figure 3.  Coefficient of variation ( CV = σ/µ ) of the nine planktonic populations resulting from numerical 
integration of model equations plotted versus the considered values of τ ; the different curves are related to 
different values of the noise intensity D.
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lines). Differently from the previous case, when τ → 0 the noise tends to a delta-correlated noise, that is a white 
noise; for τ  = 0 , instead, the noise spectrum is not flat, being characterized by a Cauchy-Lorentz distribution. 
The strong nonmonotonicity of CV with respect to τ , emerging when there are relatively high values of CV, 
implies a greater variability of the system biomass. Lower values of CV indicate that the system dynamics is less 
influenced by the presence of noise where very little or no differences with respect to the deterministic case are 
present. Conversely, high values of CV clearly demonstrate the remarkable signature of the presence of an impact-
ing noise source. It is interesting to note that the noise influence on the ecosystem strongly depends on both τ 
and D, that is, just an intense noise is not enough to generate a greater response of the ecosystem. In particular, 
experimental data are characterized by a CV approximately equal to 0.361, which corresponds to values of D and 
τ lying on the diagonal strip in Fig. 2 ranging from (τ ,D) = (0.5, 104) to (τ ,D) = (365, 107) . Finally we note the 
presence of a noise suppression effect. High values of D, indeed, can generate slight effects when the correlation 
time τ does not take on suitable values.

The results shown here are an extension of the previous work by Benincà et al.56. There, the authors analyse a 
simpler, less realistic model of two interacting populations, whose dynamics is affected by a randomly fluctuat-
ing temperature. In that case, moreover, the deterministic oscillations of the temperature are suppressed, and 
the system exhibits intrinsic Lotka-Volterra oscillations whose frequency match with the characteristic one(s) 
of the noise. On the contrary, here, the observed maximum response (see Fig. 3) cannot be interpreted as a syn-
chronization effect, since our model does not present intrinsic Lotka-Volterra-like oscillations and the periodic 
population variability is only due to the deterministic forcing(s).

The nonmonotonic behaviour of the CV can be then interpreted as the signature of the intimate interplay 
between the ecological system and the noise. This interplay, indeed, has a pivotal role in both determining the 
dynamics of the populations and defining the characteristics of the ecosystem.

In Fig. 3 it can be observed that the value of τ for which CV is maximum strongly depends on the noise inten-
sity D. In particular, it is possible to note that the peaks in Fig. 3 move towards higher values of τ as the noise 
intensity increases. Thus, Fig. 3 demonstrates that the maximum-response effect to the random fluctuations is 
sensitive to the noise intensity D.

However, it is important to underline that the response of the system to the noisy signal does not depend on 
the yearly oscillations induced by the deterministic forcings. Indeed, by considering constant the deterministic 
part of all external forcings (temperature, irradiance, wind and salinity), the non monotonic behaviour of CV 
with respect to both τ and D is still present, provided that the populations are not extinct (plot not shown). In 
this scenario indeed, besides dinoflagellates, diatoms and nanoflagellates are practically extinct as well, exhibiting 
thus a constant vanishing variance. All the other strains, instead, present qualitatively the same nonmonotonicity 
with only slight differences (shift of the peaks and different mean values of the CV curves), probably due to the 
extinction of diatoms and nanoflagellates which causes relevant differences in the system dynamics. More spe-
cifically, the system’s response seems to depend on both the noise intensity and the correlation time (see Fig. 3).

In this scenario (absence of seasonal driving) we have studied the dependence on both parameters D and τ of 
the probability density functions (PDFs) of the non-vanishing populations. In Fig. 4, the PDFs of bacteria (B1), 
picophytoplankton (P3), microzooplankton (Z5) and etherotrophic nanoflagellates (Z6) are plotted for τ = 0.5 
and eight different values of the parameter D.

We see that the mean value and the variance of these populations are strongly affected by the presence of 
random fluctuations in the irradiance. Specifically, as the noise intensity increases the mean values of picophy-
toplankton and bacteria concentrations exhibit a shift. In particular, the results indicate that picophytoplankton 
is disavantaged by the presence of a noisy component in the irradiance, which indeed tends to inhibit its ability 
to absorbe the solar light, slowing down its growth. As a consequence, since phytoplankton and bacteria com-
pete for the same resources, as the former declines the latter are favoured, with a compensation mechanism 
which allows their predators (zooplankton populations) to be almost not affected by the noisy behaviour of the 
irradiance. Further, we note that for intermediate values of the noise intensity ( D = 104 − 105 ) a maximum of 
the variance occurs (the PDFs are clearly spread on a wider range of values). Such an effect indicates that the 
noisy behaviour of irradiance strongly influences the whole ecosystem dynamics. Moreover, the nonmonotonic 
behaviour of the variance (its PDFs become larger and then tighter again as the noise intensity increases) indi-
cates that the noise pushes the ecosystem away from equilibrium, driving it towards a non-equilibrium steady 
state. Finally, we note that the nonmonotonic behaviour of CV as a function of the noise intensity remains also 
in the presence of seasonal driving.

Figure 5 shows indeed the nonmonotonic response of the ecosystem to the change of D when the deter-
ministic seasonal cycling of the four environmental parameters (temperature, irradiance, wind and salinity) is 
present. It is easy to observe that also in this instance the major noise-induced effect appears in nanoflagellates 
and diatoms with a percent standard deviation of 50% and 100% , respectively. The coalescence of different 
curves (related to different values of τ ), as D decreases, is due to the fact that for D → 0 the impact of the noise 
is negligible and the evolution of the system practically resembles the deterministic one. On the contrary, for 
higher values of D remarkable differences arise and clear peaks of CV appear in the considered range of variation.

These plots show that, for a fixed value of τ , there exists a value of the noise intensity for which the planktonic 
concentrations are maximally spread around their mean values (corresponding to the maximum value of CV and 
then of the variance). Moreover, such a nonmonotonic behaviour suggests the presence of a resonance, which 
can be interpreted as the effect of the interplay between the nonlinearity of the system and the environmental 
random fluctuations.

Also in this case, the interplay between the two parameters D and τ in determining and characterizing the 
dynamics of the ecosystem transparently emerges. The value of D corresponding to the maximum value of CV, 
indeed, basically depends on the specific value of τ.
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Finally, we point out that the different dynamic scenarios identified by the D-τ couples can be experienced 
by the system during the year, since the two parameters may seasonally vary depending on the different weather 
conditions. In other words, a seasonally varying noise (see Fig. 1c) may cause the nine populations explore dif-
ferent regions of the D-τ space during the year. Therefore, the results reported in this paper can highlight the 
detectable yearly variability of a marine ecosystem which does not stem from the deterministic seasonal variation 
of environmental parameters.

Effects on the organic carbon. In this subsection the effects of the irradiance noise on the biogechemistry 
are analysed. In Fig. 6 the dependence on τ of both the CV [panel (a)] and the mean value concentration [panel 
(b)] of detritus, labile dissolved organic carbon (L-DOC), semi-labile dissolved organic carbon (SL-DOC) and 
gross primary production (GPP) are shown. All these biogeochemical properties are correlated with carbon 
cycling. Gross primary production is related to the amount of carbon entering in the ecosystem, and is related 
to the maximum energy available in the ecosystem progressively dissipated in the trophic web. Gross primary 
production is directly affected by light fluctuation and its CV shape is very similar to that of the irradiance, Fig. 2. 
We selected also detritus and DOC because they are important indicators for the carbon cycling dynamics and 
are related to the cycling of chemicals like heavy  metals62. The different curves, related to different values of D, 

Figure 4.  Dependence of the probability density functions of non-vanishing populations on the parameter D 
for τ = 0.5 . The curves are normalized within the interval taken into account. For this reason the relative peaks 
of the curves in the bottom panels have different values compared to those of the top panels. However, the figure 
aims at showing the existence of the value of the noise intensity for which the system is more sensitive as well as 
the generation of a stationary out-of-equilibrium state induced by the noise.
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approach the same (vanishing) value for large τ . As previously discussed for the CV [Fig. 6(a)] of biomass con-
centrations, this circumstance is due to the fact that, in this case, the system dynamics tends to the deterministic 
case, characterized by a unique possible realization implying a vanishing standard deviation. For high correla-
tion times thus the system is insensitive to the noise intensity. On the contrary, for small values of τ , different 
values of D lead to significant differences of the variance. In particular, detritus, L-DOC and SL-DOC exhibit a 
clear non-monotonic behaviour whose maximum value depends on the combined values of D-τ . Only the GPP 
presents a decreasing monotonic behaviour.

The dependence of the mean value concentration on τ , instead, is qualitatively the same for all the four param-
eters. Also in this case we can note a diversification with respect to D occurring at small τ and a (deterministic) 
constant value arising for low (high) values of D ( τ).

These results manifest that not only the population dynamics, but also all the biogeochemical processes are 
profoundly affected by the presence of stochastic environmental variables. The values and the behaviour of the 
examined quantities are indeed determined by the intimate interplay between the intensity and the time cor-
relation of the noise fluctuations.

Concluding discussion
One of the most important prerequisites for an appropriate assessment and management of risks associated with 
the climatic variations is to understand the processes that regulate the chemistry of the elements in seawater. 
These processes, indeed, are connected with potential risks for marine ecosystems both as a function of varia-
tions of chemical and physical conditions of the marine environment and in terms of specific bioavailability and 
possible biomagnification along the trophic web. Variations of basic processes can cause a series of macroscopic 
effects on all the components of the earth system, affecting more and more our planet. Crucial modifications 

Figure 5.  Coefficient of variation ( CV = σ/µ ) of nine planktonic populations resulting from numerical 
integration of model equations plotted versus the considered values of D; different curves correspond to 
different values of the correlation time τ.
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in the main biogeochemical cycles and major photosynthetic processes, for example, could be induced by such 
changes during the next decades, with dramatic consequences on the functioning of marine ecosystems.

The mathematical models used to foresee the impact of the changes in the basic biogeochemical processes 
on the trophic network cannot neglect the intrinsic stochasticity characterizing the environmental parameters. 
The consideration of stochastic processes, indeed, allows to catch phenomena otherwise neglected: the noise, 
for example, can have a profound impact on the steady-state of an aquatic ecosystem. In phytoplankton popula-
tion dynamics, changes of limiting factors such as the light intensity and nutrient concentration cause a passage 
from a stability condition to another and vice-versa48,49. Other physical variables, such as temperature, can 
further modify the spatio-temporal behaviour of the net growth rate of the phytoplankton biomass production 
 mechanism47.

With regard to this aspect, the present work is a first step aiming at proposing an integrated experimental-
modelling approach. The model we used is the Biogeochemical Flux Model (BFM) which simulates the dynamics 
of a marine ecosystem composed of nine populations, considering several biological and chemical processes at 
the base of such a network system, like respiration and excretion etc.. This is the first attempt of investigating the 
effects of the random fluctuations of solar irradiance on the dynamics of a natural complex system. The solar 
irradiance fluctuations affect the dynamics of the ecosystem since sunlight governs several fundamental processes 
like the photosynthesis. The use of the stochastic version of the BFM brings to light the effects of random fluc-
tuations on the trophic web and shows the role played by the environmental noise on the ecosystem dynamics.

By examining the nine-year temporal series of the irradiance, collected by the Boussole buoy on the Gulf 
of Lion, we extracted information about the main features which characterize the random fluctuations of the 
light intensity. On this basis, we modeled the noise affecting the irradiance with a zero-mean multiplicative 
Ornstein-Uhlenbeck process, imposing the limited range [−100%, 100%] for the fluctuations as suggested by 
the results of our analysis.

The two parameters of such a stochastic process are the intensity of the noisy fluctuations (D) and their cor-
relation time ( τ ). We explored 231 scenarios identified by different (fixed) values of D-τ couples performing, for 
each scenario, sets of 1000 realizations, and studying the emerging effects on the population dynamics. In this 
way we generated D-τ maps where our system ideally moves drawing trajectories during the year which depend 
on to the seasonal changes of the two noise parameters (D and τ ) clearly highlighted by the experimental data 
for the irradiance fluctuations. In particular, we studied the dependence of the coefficient of variation (CV) of 
the biomass concentrations of the nine strains on both D and τ . We found a relevant nonmonotonic behaviour 
of CV versus the two noise parameters. Such a nonmonotonic behaviour indicates the existence of a region in 
the parameter space where the ecosystem is highly sensitive to the random fluctuations, exhibiting a maximum 
response to the noisy component of the  irradiance56.

In light of these results, we wish to note that our analysis contributes to reveal the presence of a non-trivial 
noise-induced dynamics, where the ecosystem is pushed away from the deterministic attractor and is more 
realistically driven towards a new non-equilibrium steady state. This noise-induced state disappears after remov-
ing the noise source and the system goes back to the deterministic equilibrium state. This confirms that the 

Figure 6.  (a) Coefficient of variation ( CV = σ/µ ) and (b) mean value concentration ( µ ) of detritus, labile 
dissolved organic carbon (L-DOC), semi-labile dissolved organic carbon (SL-DOC) and gross primary 
production (GPP) resulting from numerical integration of model equations plotted versus the considered values 
of τ ; the different curves are related to different values of the correlation time D.
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noise induces no transition towards a new equilibrium point, simply maintaining the ecosystem in an out-of-
equilibrium stationary regime.

Finally, a clear nonmonotonic dependence on both the parameters τ and D has been observed for the CV of 
detritus, labile dissolved organic carbon and semi-labile dissolved organic carbon, which proves that also the 
biogeochemistry is deeply influenced by the environmental stochasticity.

Therefore, our results demonstrate that the variance of the stochastic irradiance (determined by the values 
of D and τ ) indirectly generates variability in the population concentrations and that the maximum variance 
on the biomass does not correspond to the maximum of variability of the light noise. Such a nonmonotonicity 
unveils the remarkable interplay between the noise and the nonlinearity which governs the system dynamics.

Methods
The biogeochemical flux model. The deterministic biomass-based BFM includes a conspicuous num-
ber of studies and applications,  namely10–19, to cite a few. The deterministic configuration of the BFM has been 
developed to accurately reproduce the dynamics of the following plankton functional types (PFTs): primary pro-
ducers (phytoplankton), predators (zooplankton), and decomposers (bacteria). Within these functional classes 
more specific functional subgroups can be identified to better define the planktonic food web. Diatoms (P1), 
flagellates (P2), picophytoplankton (P3) and dinoflagellates (P4) constitute the class of primary producers. The 
class of predators consists of: i) microzooplankton, composed of heterotrophic nanoflagellates (Z6) and micro-
zooplankton (Z5); ii) Mesozooplankton, distinguishable in omnivorous (Z4) and carnivorous (Z3). Bacteria (B1) 
are responsible for the basic aspect of recycling organic compounds in inorganic constituents such as nitrates, 
phosphates and silicates. The BFM provides a much more realistic description of the microbial food-web trophic 
interactions than the remarkably simpler Lotka-Volterra type  models63–65. It accounts, indeed, also for the major 
biogeochemical processes that form the basis of the dynamics of a pelagic marine ecosystem. The BFM simu-
lates, for example, the cycles of nitrogen, phosphorus, silica, carbon, and oxygen in water due to plankton activ-
ity. A sketch of the trophic network is shown in Fig. 7.

The state of each plankton functional group is formalised as a vector whose components are given by the 
primary constituent concentrations. The physiological condition of bacteria, for example, is defined by the set 
of intracellular concentration of carbon, nitrogen, phosphorus, silicon and chlorophyll. The health of the cell is 
of course defined by the intracellular quota of all  elements66, although carbon is the fundamental “currency” of 
life, that is, the leading element in the BFM framework.

The deterministic BFM dynamics presents a cyclic behaviour for all the interacting plankton functional 
 types54. The deterministic oscillations, at the steady state, are related to the seasonally periodic behaviour of solar 
irradiance and environmental temperature. The former oscillates with a seasonal period between a lower value 
during winter ( 100 µE ·m−2 ) and a higher value during summer ( 700 µE ·m−2 ), with a superimposed day-night 
light cycle (see panel B in Fig. 7). Analogously, temperature (T(t)) deterministically varies over one-year period 
( Tdet(t) ) with a minimum value in winter ( 8 ◦C ) and a maximum value in summer ( 28 ◦C ) (panel B in Fig. 7).

B1 P1 P2 P3 P4

Z6 Z5

Z4 Z3
A

Nutrients

Figure 7.  (A) Trophic web interactions described by the BFM. The considered nine plankton populations are: 
carnivorous mesozooplankton (Z3), omnivorous mesozooplankton (Z4), microzooplankton (Z5), heterotrophic 
nanoflagellates (Z6), bacteria (B1), diatoms (P1), nanoflagellates (P2), picophytoplankton (P3), and 
dinoflagellates (P4). An arrow directed from one box to another indicates a predation flux. Solid arrows denote 
a higher preference for a specific prey while dashed ones indicate a lower preference. A looping arrow on the 
box itself denotes cannibalism. Deterministic time behaviour during the tenth (last) year of simulation of: (B) 
temperature ( Tdet , ◦ (C) and irradiance (Irr, W m−2 ); C) inorganic nutrients phosphates ( PO4 , mmol P m−3 ), 
nitrates ( NO3 , mmol N m−3 ), and ammonia ( NH4 , mmol N m−3 ); (D) bacteria, diatoms, nanoflagellates, 
picophytoplankton, and dinoflagellates, all expressed in mg C m−3.
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The system dynamics is strongly influenced by the downward solar irradiance. In winter, indeed, the system is 
limited by light with diatoms and nanoflagellates showing very low concentrations. After the cold period, when 
light is no longer limiting while nutrients are, picophytoplankton (P3) dominates among the primary producers, 
winning the competition for nutrients (in particular nitrates) (see panels C and D in Fig. 7). Dinoflagellates are 
virtually extinct because of their low growth rate. The predation, according to the trophic web shown in Fig. 7, 
modulates in summer the biomass of the microbial loop compartment (bacteria and picophytoplankton), which 
shows sustained biomass during all the rest of the year. It is worth pointing out that no intrinsic oscillations would 
be present in the ecosystem dynamics if the seasonal forcing-induced variability were neglected.

In order to describe such a complex network dynamics the BFM is a system of 54 nonlinear ordinary dif-
ferential equations (ODEs). For more specific details and the full list of equations and processes included in the 
BFM, Ref.41 and the BFM code  manual5 are recommended. The standard formulation of light limitation used in 
BFM, which is based on a saturating  formulation67, has been extended in the present work with a photoinhibition 
 term68 to account for cell degradation related to high light exposure. To understand the role of photoinhibition 
we performed a sensitivity analysis and verified that such effects have low impact on the ecosystem dynamics.

The stochastic version of the biogeochemical flux model. Considering  the solar irradiance as a 
stochastic process leads  to the stochastic version of the Biogeochemical Flux Model (SBFM). In this work the 
irradiance is considered to be influenced by a multiplicative self-correlated Gaussian noise. The choice of a 
multiplicative noise is simply due to the fact that the light signal vanishes during the night and then the noise 
intensity must necessarily vanish as well. The random fluctuating light can be formally described by the follow-
ing Langevin equation

with τ being the correlation time and ξL the white Gaussian noise with mean value and correlation function 
given by

Here D is the intensity of a white Gaussian noise source (expressed in second), and FL the randomly fluctuating 
component of the irradiance.

It is important to underline that FL cannot become smaller than -1 since in this case physically unacceptable 
values of light irradiance, that is negative values, would be reached. For this reason we imposed [−1, 1] as range 
of variation of FL . The upper bound is not strictly necessary in principle, however Fig. 1c indicates that random 
fluctuations do not exceed the ±100% limit. Moreover, a symmetric range of variation ensures a Gaussian dis-
tribution around the (almost) vanishing mean value.

The stochastic process we consider in Eq. (2) corresponds to the so called Ornstein-Uhlenbeck process, which 
can be interpreted as a damped Brownian motion. In this case the damping parameter is characterized by the 
temporal scale τ . The Ornstein-Uhlenbeck process presents analytical expressions for the mean value and the 
 variance69, namely:

where σL is the amplitude of the light fluctuations. Asymptotically, that is for sufficiently long times ( t ≫ τ ), the 
average of fluctuations vanishes with the variance tending to D

2τ
 . According to the Wiener-Khinchin  theorem69, 

through the stationary correlation function

the corresponding spectrum (S) can be computed as

with s = t − t′ being the lag time and ν the frequency.
It is worth noticing that the damping term in Eq. (2) is needed since a white Gaussian noise source would 

cause in time an unlimited increase of the light fluctuation amplitude. Such a non-physical condition is avoided 
within the Ornstein-Uhlenbeck framework for τ  = 0 , with τ → 0 giving again a white Gaussian noise source.

Simulations. The model equations were integrated within a time-window of nine years. In order to neglect 
the transient dynamics and to focus only on the oscillating steady state (which characterizes the long-time sys-
tem behaviour), in the multi-panel figures only the last five years have been considered. The mathematical com-
plexity of the model requires that we numerically integrate the equations and average the results over a set of 

(1)L(t) = Ldet(t)[1+ FL(t)],

(2)
dFL(t)

dt
=−

FL

τ
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ξL(t)

τ
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−
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realizations. We chose the Ito scheme to numerically solve the Fokker-Planck equations and to perform 1000 
realizations for each dynamical scenario identified by a precise couple of values for the noise intensity D and the 
correlation time parameter τ.

Due to the nonlinear character of the BFM, averaging over different realizations does not rule out the effects 
stemming from random environmental fluctuations. In a linear model, indeed, the mean value of a generic 
variable is not affected by stochastic perturbations. Conversely, in the presence of nonlinearities, intriguing 
counterintuitive changes may be observed both for the variance and the mean value of the state variables.

Data availability
The experimental datasets analysed during the current study are available in the following repository: BOUS-
SOLE mooring, Antoine and Vellucci, 2020; http:// www. obs- vlfr. fr/ Bouss ole/ html/ proje ct/ bouss ole. php. The 
datasets generated during the current study are available from the corresponding author on reasonable request.

Code availability
The code of the main deterministic version of the BFM is open source and available at https:// bfm- commu nity. 
github. io/ www. bfm- commu nity. eu/. Details about the stochastic version of the BFM code reproducing the key 
results of this paper is available from the corresponding author upon reasonable request.
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