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ABSTRACT

The use of autonomous profiling floats for observational estimates of radiometric quantities in the ocean is

explored, and the use of this platform for validation of satellite-based estimates of remote sensing reflectance in

the ocean is examined. This effort includes comparing quantities estimated from float and satellite data at

nominal wavelengths of 412, 443, 488, and 555 nm, and examining sources and magnitudes of uncertainty in the

float estimates. This study had 65 occurrences of coincident high-quality observations from floats and MODIS

Aqua and 15 occurrences of coincident high-quality observations floats and Visible Infrared Imaging Radi-

ometer Suite (VIIRS). The float estimates of remote sensing reflectance are similar to the satellite estimates,

with disagreement of a few percent in most wavelengths. The variability of the float–satellite comparisons is

similar to the variability of in situ–satellite comparisons using a validation dataset from theMarineOptical Buoy

(MOBY). This, combined with the agreement of float-based and satellite-based quantities, suggests that floats

are likely a good platform for validation of satellite-based estimates of remote sensing reflectance.

1. Introduction

Satellite-based radiometry missions of the ocean re-

quire validation of data products by in situ measurements

to assess and improve, if necessary, the accuracy of

satellite-derived quantities (Mueller et al. 2003b). The

most fundamental of the quantities estimated by satellites

are water-leaving radiance Lw and remote sensing re-

flectance Rrs (the ratio of upwelling radiance to down-

welling irradiance at the ocean surface). These are used to

determine optical and biological quantities in the upper

ocean using theoretical and empirical algorithms. In ad-

dition to product validation, satellite missions must un-

dergo vicarious calibration of their radiometers through

which in situmeasurements are used to determine a single

set of spectrally dependent calibration factors (possibly

with weak time dependence) for application to all loca-

tions and times (Clark et al. 1997; Franz et al. 2007).

The two major instrumented deep-water locations for

vicarious calibration and product validation have been the

Marine Optical Buoy (MOBY) offshore of Lanai, Hawaii

(Clark et al. 2003), and Bouée pour l’acquisition de Séries
Optiques à Long Terme (BOUSSOLE) in the Mediterra-

nean offshore of Nice, France (Antoine et al. 2008). For

validation, these are complemented by shallow-water sites

of the ocean color component of the Aerosol Robotic

Network (Zibordi et al. 2009). Vicarious calibration is

generally performed with more exacting quality control

standards than product validation and in environments

with limited spatial variability and well-understood atmo-

spheric conditions (Franz et al. 2007; Voss et al. 2010;

Zibordi et al. 2015). Product validation, however, benefits

from a broad set of observations over a wider range of
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natural variability (Hooker et al. 2007;Werdell et al. 2007).

Although the established sites provide excellent continuous

in situ data, for validation it is advantageous to collect data

from additional open ocean sites that more completely

span the natural range of environmental conditions.

This paper explores the use of autonomous profiling

floats (Davis et al. 2001) for in situ radiometry measure-

ments. By drifting freely in the ocean and moving verti-

cally by changing their buoyancy, profiling floats allow

coverage of a wide range of locations, ocean optical

properties, and atmospheric conditions. Floats currently

provide more hydrographic data than any other platform

in the ocean (Roemmich et al. 2009), and they are com-

monly deployed for periods of several years. Early in their

development, a few floats were equipped successfully with

radiometers (Mitchell et al. 2000). More recently they

have carried other optical instruments used for estimating

quantities, such as beam attenuation, absorption by col-

ored dissolved materials, and chlorophyll concentration

(e.g., Bishop et al. 2004; Boss et al. 2008; Xing et al. 2012;

Estapa et al. 2013; Xing et al. 2014). Organelli et al. (2016)

used autonomous floats to measure vertical profiles of

downwelling irradiance in the upper 250m of the ocean.

Many of the strengths and difficulties associated with us-

ing autonomous floats to measure optical properties were

reviewed in a report by the International Ocean-Colour

Coordinating Group (IOCCG 2011).

In this studywe describe the use of autonomous profiling

floats as a new platform for validation of satellite estimates

of remote sensing reflectance. Although our dataset is not

sufficient to confirm the suitability of floats for vicarious

calibration, this use may be possible in the future. For this

analysis we examine the reliability of the float estimates in

comparison to the satellite estimates. In the following sec-

tions, we describe our methods (section 2), present results

(section 3), examine sizes and causes of uncertainty (sec-

tion 4), discuss the suitability of floats for validation (sec-

tion 5), and offer brief conclusions (section 6).

2. Methods

We used a set of six autonomous profiling floats

deployed in the Mediterranean Sea, Pacific Ocean, and

Atlantic Ocean to estimate radiometric quantities, chiefly

Rrs at four wavelengths, nominally 412, 443, 488, and

555nm.We compared these in situ estimates to estimates

made by the ocean colormeasurementsmade byMODIS

Aqua and the Visible Infrared Imaging Radiometer Suite

(VIIRS) on board Suomi-NPP that have been vicariously

calibrated using MOBY observations. The following

subsections describe the floats and float measurements,

the satellite measurements, quality control, and the sta-

tistics that we used in the analysis.

a. Float vehicle and instrumentation

The vehicle is the Autonomous Profiling Explorer

(APEX) profiling float manufactured by Teledyne

Webb Research with computational hardware genera-

tion APF9i. The standard APEX firmware was modified

to handle additional instruments and to accomplish the

sampling goals of the mission. Each deployment had

slightly different firmware, as improvements were made

between deployments.

Instruments on the floats measured physical and

optical quantities, including salinity, temperature, pres-

sure, downwelling irradiance, upwelling radiance, several

inherent optical properties, and oxygen concentration.

Only radiometric quantities and pressure are used in this

study. Both radiometers were model OCR-504, manufac-

tured by Satlantic. The upward-looking radiometer (irra-

diance) was on top of the float and occupied the highest

position to have an unobstructed view of the sky (Fig. 1).

FIG. 1. Photograph of Mediterranean A float after recovery near

BOUSSOLE. The optics package is the blackbody attached to the

side of the float. The radiometers are marked with arrows (red:

downwelling irradiance, orange: upwelling radiance). (Photograph

by Florent Besson.)

2332 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 33



The downward-looking radiometer (radiance) was on the

base of the optics package (assembled by WET Labs),

which was attached to the side of the float. The base of the

radiometer was slightly higher than the base of the float,

but the float was outside the field of view of the

radiometer.

The radiometer bands were chosen to be close to the

bands on MODIS Aqua and have a 10-nm bandwidth

(full width at half maximum response amplitude). We

made direct comparisons of Rrs between floats and sat-

ellites without making any corrections for slight differ-

ences in wavelength (a few nanometers) or sensor

bandwidth. Throughout this paper we label each band

with the wavelength of the equivalent band on MODIS

Aqua (Table 1).

b. Float deployments

We deployed floats in three pairs in this study, one

pair near the BOUSSOLE optical mooring in the

Mediterranean Sea (Antoine et al. 2008), one pair

near the MOBY optical mooring near Hawaii (Clark

et al. 2003), and one pair northwest of Bermuda

(Table 2). In each deployment, two floats were re-

leased relatively close to each other in space and time,

within several kilometers and one day (Fig. 2). The

floats generally remained near each other for sev-

eral days after deployment, but they eventually di-

verged onto different paths. Two-way communication

via Iridium allowed variation of sampling and float

behavior for each profile, although we kept most

parameters constant for the majority of each

deployment.

c. Float behavior and sampling

Each float profile is divided into an ascent phase

(rising to the surface from depth) and a buoy phase

(drifting at the surface). In standard operation the floats

were parked at ;1000m to minimize fouling (following

IOCCG 2011) and were profiled once every 2 days. For

the near-surface measurements used in this study, the

target ascent rate was 4 cm s21. Radiometric data were

sampled continuously at 1Hz, and during each 1-Hz

sample, the radiometers integrated over approximately

0.933 s. In standard APEX sampling, pressure mea-

surements are made at specified depth locations limited

to about 1-m resolution. For the BOUSSOLE and

Hawaiian floats, the coarse depth resolution and vari-

ability in ascent rate was a source of depth uncertainty. To

improve the depth estimates for the 1-Hz optical data in

the deployment of the Atlantic floats, we modified the

APEX firmware to provide higher-frequency pressure

measurements near the surface. These measurements

were taken approximately once every 3 s (1/3Hz) with

longer gaps (about 15 s) at times when T and S mea-

surements are made (1–2-m spacing).

After reaching the surface and finishing their ascent,

the floats waited for about 10min before sampling in

their buoy phase. This delay allowed time for the floats

to fully inflate their oil and air bladders and determine

location. We targeted the local solar time of 1330 for

surfacing, and the floats were generally within 30min of

this target. During the buoy phase, the downwelling ir-

radiance sensor was about 0.3m above the sea surface,

and the upwelling radiance sensor was about 1.12m

below the surface. Uncertainty in the mean depth (ig-

noring bobbing) of the radiometer below the surface is

likely no more than a few centimeters.

d. Float estimates of water-leaving radiance

For each profile, the Lw was computed using mea-

surements of the upwelling radiance made during the

buoy phase, Lu(zb), where zb is the vertical location of

the upwelling radiance sensor during the buoy phase

measurement. The termLu is extrapolated to the surface

using the diffuse attenuation coefficient for upward

TABLE 1. Summary of central sensor wavelengths (mm) used in

direct comparisons. Float deployments are described in Table 2.

MODIS Aqua 412 443 488 555

VIIRS 410 443 486 551

Mediterranean A 411.3 443.8 489.7 554.1

Mediterranean B 412.0 443.4 489.7 554.2

Hawaii A 412.1 443.9 489.7 554.7

Hawaii B 411.8 443.4 489.6 554.1

Atlantic A 412.2 443.8 489.4 555.0

Atlantic B 412.2 443.8 489.4 555.0

TABLE 2. Summary of deployments. Latitude and longitude are those for the first profile.

Float name Location Start date End date No. profiles Lat Lon

Mediterranean A Near BOUSSOLE 12 Jul 2011 13 Sep 2011 29 43.368 7.918
Mediterranean B Near BOUSSOLE 12 Jul 2011 15 Sep 2011 28 43.358 7.938
Hawaii A Near MOBY 17 Dec 2011 20 Jul 2013 332 20.818 2157.198
Hawaii B Near MOBY 18 Dec 2011 8 Nov 2013 360 20.818 2157.198
Atlantic A Northwest of Bermuda 3 May 2012 29 Sep 2013 300 33.188 265.718
Atlantic B Northwest of Bermuda 3 May 2012 12 Nov 2012 132 33.288 265.758
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radiance KL that was estimated during the float’s ascent

(described in more detail below). Both Lu and KL de-

pend on wavelength, but for compact notation the

wavelength dependence is implied. In all calculations we

only used samples whose tilts were smaller than a

threshold of 58on either axis. We note that determining

the representative tilt for each measurement in this

study is problematic. The tilt sensors made single quasi-

instantaneous measurements for each 0.933-s radiance

measurement, so the tilt was likely not constant over the

full measurement interval. It is possible that measure-

ments with a 58 tilt were at tilts a few degrees higher or

lower during their sampling interval but still likely

within the NASA recommendation of 6108 (Mueller

et al. 2003a).

Each float is azimuthally asymmetric, and the float

itself can cast a shadow with relatively sharp edges. For

buoy phase measurements, we eliminated observations

at unfavorable orientations relative to the sun by using

observations ofLu only at times when the optics package

and sun were within 6908 of alignment, where 08 is the
direction at which the optics package is directly between

the float and the sun. A shading correction similar to that

described by Leathers et al. (2004) was used for the buoy

phase measurements (described further below). For the

ascent phase measurements, we used observations at all

relative azimuths, regardless of the likelihood of shad-

ing, and we did not perform a shading correction.

We describe the ascent phase measurements first, the

buoy phase measurements second, and extrapolation to

and through the sea surface third.

1) DIFFUSE ATTENUATION COEFFICIENT

The diffuse attenuation coefficient KL was computed

from observations made during the float ascent. For the

Atlantic floats (the two for which we have high-frequency

pressuremeasurements), themedian ascent rate between

13.5 and 1.5m was 4.3 cms21 with a standard deviation of

1.3 cms21. Ninety-five percent of the ascent rates were

slower than 5.8 cms21. Because the radiometers in-

tegrated for 0.933 s, each sample represents an average

over 4.0 and 5.4 cm for these median and limiting ascent

rates, respectively. These ascent rates and integrated

sampling were chosen, in part, to minimize variability

caused by wave focusing (Stramska and Dickey 1998;

Zibordi et al. 2004; D’Alimonte et al. 2010).

The ascent observations of Lu were grouped into four

bins of 3-m thickness between depths of 13.5 and 1.5m.

Within each bin, we estimated parameters with a least

squares fit of the model

L
u
(z2 z

m
)5cL

u
(z

m
)e(z2zm)KL , (1)

where z is the vertical coordinate, positive upward, with

z5 0 at the sea surface (Fig. 3). The quantity on the left

side is an observation, and the quantities cLu(zm) andKL

on the right side are parameters estimated from the

model fit. For this fitting we took zm as the mean depth

of all the observations within the bin. The diffuse at-

tenuation coefficient estimated for the shallowest bin

was used to propagate Lu(zb) to the surface. Values of

KL for deeper bins were used for quality control.

FIG. 2.Maps showing float trajectories for all deployments. Lines

show paths over full lifetimes of floats. Dots show locations of

profiles used in this study.
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We used observations at all relative azimuths to main-

tain data density during ascent. Eliminating certain head-

ings left many profiles with only a small number of useable

observations. As will be discussed in section 4, this is likely

to increase the uncertainty in KL estimates, but it is un-

likely to contribute to the systematic bias in KL estimates.

2) NEAR-SURFACE RADIANCE AND SHADING

CORRECTION

During the buoy phase, the radiance sensor was at a

nominal depth of zb 521:12m. This depth is likely to

have varied by several centimeters as the float bobbed in

the sea surface or was passed by waves, but because the

float’s pressure sensor is exposed during buoy phase, we

have no subsurface pressure measurements with which

to estimate the magnitude of the depth variations.

Sampling intervals varied, but for most profiles in the

Hawaiian and Atlantic deployments, we collected 50–

100 buoy phase samples over 2–5min (each with a

duration of 0.933 s). For BOUSSOLE profiles, floats

sampled every second for about 10min, giving sev-

eral hundred buoy phase samples per profile.

We made a shading correction for each buoy phase

sample following the method of Leathers et al. (2004).

Thismethod ignores skylight, assumes no scattering, and

assumes that absorption is proportional to the diffuse

attenuation coefficient. The floats have a more compli-

cated shape than the cylindrical buoys described by

Leathers et al., which we modeled as three cylinders.

Each casts a shadow beneath the radiometer, and the

deepest shaded depth was used in the shading correc-

tion. Because the radiometer is located outside the cyl-

inder of the float vehicle, the correction is strongly

dependent on the azimuthal direction of the sun relative

to the optics package. ForLu, we used onlymeasurements

for which the radiometer was on the sunny side of the

float. Unfortunately, we failed to calibrate the compasses

after assembly for the floats deployed near BOUSSOLE

andHawaii. Based on the calibration of the compasses for

the Atlantic deployment, the heading uncertainty in the

other floats may be as large as 308 for some azimuths, so it

is possible that relative azimuth varied61208 (rather than
6908) in these floats.

We computed Lu(zb) as the mean of all the shade-

corrected radiance measurements that passed the tilt

and heading elimination criteria. Using mean or median

to compute Lu(zb) gave similar results.

3) EXTRAPOLATION TO AND PROJECTION

THROUGH SEA SURFACE

The Lu(zb) was extrapolated to the sea surface

assuming a constant diffuse attenuation coefficient and

using the exponential relationship

L
u
(02 )5L

u
(z

b
)e2zbKL , (2)

where Lu(02 ) is the upwelling radiance immediately

below the sea surface and KL is the diffuse attenua-

tion coefficient for the top bin. This upwelling radi-

ance was then projected through the sea surface as,

following Austin (1974) and Gordon and Clark

(1981),

L
w
5L

u
(02 )

12 r

n2
w

, (3)

where r is the internal Fresnel reflectance and nw is the

index of refraction of seawater relative to air (Quan and

Fry 1995). Fresnel reflectance was computed (Mobley

1994) as

r5

�
n
w
2 1

n
w
1 1

�2

. (4)

e. Computing in situ remote sensing reflectance

We computed remote sensing reflectance Rrs, using

in situ estimates of Lw and modeled estimates of

downwelling irradiance at the sea surface Es, de-

termined using the clear-sky model of Frouin et al.

(1989), similar to Bailey and Werdell (2006). Using

modeled values forEs was necessary because of the poor

quality of in situ observations.

Remote sensing reflectance was computed iteratively as

R
rs
5 eR

rs
F , (5)

where

eR
rs
5

L
w

E
s

(6)

is a first estimate, and F is a bidirectional reflectance

correction computed using instrument geometry, solar

geometry, and an estimate of chlorophyll-a concentra-

tion as inputs (Morel et al. 2002). This correction adjusts

all Rrs estimates to a common condition of an overhead

sun and nadir-viewing geometry. The initial estimate eRrs

was used to compute F using a blue-green reflectance

band ratio to estimate chlorophyll (O’Reilly et al. 1998).

f. Satellite observations

We acquired level 2 satellite Rrs estimates for

MODISAqua and VIIRS using the operational NASA

Ocean Biology Processing Group validation infra-

structure (http://seabass.gsfc.nasa.gov/seabasscgi/search.cgi).

MODIS Aqua and VIIRS data were processed using

their R2013.1 configurations from September 2013
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and June 2013, respectively. Satellite data processing

and quality assurance followed Bailey and Werdell

(2006). Specifically, satellite values were the filtered

mean (via the interquartile range) of all unflagged pixels

in a 5 3 5 box centered on the in situ target. The max-

imum allowable time difference between float and sat-

ellite observations was defined as 63 h. Satellite values

were excluded if they failed the other criteria thresholds

defined by Bailey and Werdell, which included testing

for extreme variation between pixels, excessive solar

zenith or satellite zenith angles, minimum numbers of

unflagged pixels, and if multiple satellite files matched

the in situ data, only the closest in time was used.

g. Statistics for analysis and quality control

Because this study is effectively validating the float

observations, we take the satellite observations as the

‘‘truth.’’ Our primary metric is the ratio of float to sat-

ellite estimates of Rrs, which we label G:

G5
R

f

R
s

, (7)

whereRf is the float estimate ofRrs andRs is the satellite

estimate ofRrs. Themean ratio over the full deployment

is G:

G5
1

N
�
N

i51

G
i
, (8)

where N is the number of profiles, i is an index variable,

and Gi refers to the results from individual pairs of

satellite and float observations (matchups). In addition

to the mean and median, we compute the standard de-

viation (sG), standard error (sG/
ffiffiffiffi
N

p
), and kurtosis ofGi

following their conventional definitions (e.g., Bendat

and Piersol 2000).

We also compute the median over all profiles as

eG5median(G
i
) , (9)

and we compute two ranges directly from the distribu-

tions of Gi. The interquartile range S50 contains 50% of

the observed values of G:

S
50
5G

0:75N
2G

0:25N
, (10)

and S95H is the half-width of the range of the distribution

that contains 95% of the observed values of Gi:

S
95
5G

0:975N
2G

0:025N
(11)

S
95H

5
S
95

2
. (12)

In both of these definitionsGi is sorted in ascending order

and the subscripts are rounded to the nearest integer. For

S50, 25% of the observations are smaller than the mini-

mum value that defines the range and 25% of the obser-

vations are larger than the maximum value that defines

the range. For S95, 2.5% of the observations are smaller

than the minimum value that defines the range and 2.5%

of the observations are larger than the maximum value

that defines the range. In a perfect sample of a Gaussian

distribution, 2sG and S95H would be nearly equal.

We compute the mean absolute relative difference

(MARD) as

MARD5
1

N
�
N

i51

����Rfi
2R

si

R
si

����5 1

N
�
N

i51

jG
i
2 1j (13)

and the median absolute relative difference (EARD) as

EARD5median(jG
i
2 1j) , (14)

where Rfi and Rsi are individual estimates of Rrs by the

floats and satellites, respectively. We also make direct

comparisons of float and satellite Rrs values by using a

reduced major axis regression to estimate coefficients in

the model

R
fi
5 a

0
1 a

1
R

si
, (15)

computing the root-mean-square difference (RMSD),

RMSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i51

(R
fi
2R

si
)2

s
, (16)

and the squared Pearson’s correlation coefficient, r2. For

reference, we compare the dimensional statistics to the

mean of the satellite estimates of Rrs,

R
si
5

1

N
�
N

i51

R
si
. (17)

To examine the variability within individual profiles,

we compute normalized differences of a generic quan-

tity from a reference or modeled value as

f
A
5

A
x
2A

r

A
r

, (18)

where A is a quantity of interest, fA is the normalized

difference, the subscript r refers to a reference or mod-

eled value, and the subscript x refers to a value that is

measured or computed. The quantities used for Ax and

Ar are made clear for each specific usage. Because Ar is

constant, many statistics computed using fA are equiv-

alent to statistics computed using Ax alone and then
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taking differences from and/or normalizing by Ar. If Ar

represents the mean of a population of individual mea-

surements, Ax, then the coefficient of variation of the

population is the standard deviation of fA:

CV
A
5 std( f

A
) . (19)

h. Quality control of float measurements

Quality control was performed for the float observa-

tions usingLu(zb) and the estimates ofKL and cLu in each

of the 3-m bins. For each criterion we examined all

wavelengths. If the criterion failed for any wavelength,

then the profile was eliminated from the dataset.

Quality control on KL required

K
L
. 0, (20)

K
L
, 0:2m21 , (21)����� K

L4
2K

L3

0:5(K
L4

1 k
L3
)

����� , 2

3
, (22)

where KL4 is KL in the top (fourth) bin, centered at a

nominal depth of 23m, and KL3 is KL in the next bin

from the surface (third bin), centered at a nominal depth

of 26m. The first two criteria [(20), (21)] were applied

to all wavelengths and all bins. If any value of KL vio-

lated the criterion, then the profile was discarded. The

third criterion [(22)] assesses variability in estimates of

KL. The threshold for (21) was chosen following Morel

and Maritorena (2001) with a chlorophyll concentration

of 2mgm23 (much larger than those observed in this

study). The threshold for (22) was chosen for consis-

tency with observed variability in KL estimates.

For upwelling radiance we required that estimates of

Lu increase vertically such that

L
u
(z

b
) . dL

u4
. dL

u3
. dL

u2
. dL

u1
, (23)

where the subscripts refer to bins centered at23,26,29,

and 212m, respectively. Because each bin is evaluated

separately, this criterion is distinct from (20).

We also required minimal variability of observations

of Lu during ascent, quantified as

hCV
Lu
i, 0:05, (24)

where CVLu is defined using (19) and (18), and the angle

brackets denote a mean. For (24), Lu(z) refers to the

noisy observations and the reference values, cLu(z), are

best-fit estimates at the observation depths. The mean is

over all wavelengths and all bins.

Finally, we required that the projection of cLu from the

top bin to zb using (1) be within 10% of the measured

value of Lu(zb), expressed as������Lu
(z

b
)2cL

u
(z

b
)

L
u
(z

b
)

������, 0:1, (25)

where cLu(zb) is the extrapolation from the top bin. For

this comparison, Lu(zb) was not corrected for shading,

but it was restricted to observations from only the sunny

side of the float. This criterion is included as a holistic

test of the consistency of the radiance estimates and the

accuracy of the KL estimate.

3. Results

Of our 1181 profiles, 1088 occurred within 3 hours of an

overpass of the Aqua satellite. Of these 1088 matchups,

126 had satellite data that passed satellite quality control

(QC) criteria, and 230 had in situ data that passed float

QC criteria. Only 65 profiles (6.0% of matchups) passed

both satellite and float QC evaluations and were useful

for validation against MODIS Aqua (Table 3). For

VIIRS, 439 profiles occurred within 3 hours of an over-

pass of Suomi-NPP. Of these matchups, 42 passed satel-

lite QC, 113 passed float QC, and only 15 (3.4%) passed

both sets of QC criteria and were useful for validation

against VIIRS (Table 4). For comparison, out of 1450

MOBY observations, Franz et al. (2007) reported 150

matchups (;10%) that passed the more stringent quality

control criteria used for vicarious calibration.

We examined in detail the float quality control criteria

that failed most commonly at times of good MODIS

Aqua observations.Of the 126 profiles with goodMODIS

Aqua observations, 61 profiles failed float quality control.

Eleven of these profiles had zero samples because of

TABLE 3. MODIS Aqua statistics. Statistics are defined in section 2g. values of a0, RMSD, and Rsi have been multiplied by 100 for

readability. Units of l are nm, and units of a0, RMSD, and Rsi are sr
21.

l G eG 2sGffiffiffiffi
N

p
sG S95H kurtosis S50 MAPD EAPD r2 a1 a0 3 100 RMSD 3 100 Rsi 3 100

412 1.033 1.006 0.034 0.138 0.251 7.481 0.135 0.095 0.057 0.829 0.940 0.086 0.116 1.134

443 0.940 0.936 0.025 0.103 0.218 4.346 0.113 0.099 0.099 0.784 0.819 0.106 0.112 0.955

488 0.993 0.982 0.018 0.072 0.150 3.895 0.076 0.056 0.052 0.739 0.794 0.124 0.043 0.641

555 1.123 1.085 0.045 0.180 0.275 9.989 0.155 0.140 0.089 0.013 0.063 0.151 0.024 0.146
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technical problems or zero samples with low-tilt and un-

shaded orientations. Of the remaining 50 failed profiles,

20 failed only oneQC criterion, 18 failed twoQC criteria,

and the remaining 12 profiles failed 3–6 criteria. Themost

commonly failed criterion was the requirement of mini-

mal difference inKL between the top two bins [(22)]. This

accounted for 37 rejected profiles, of which 12 passed all

other criteria. The next most common failure criterion

was the requirement that Lu(zb) be within 10% of the

radiance projected upward from the top bin [(25)], which

accounted for 21 rejected profiles, of which 5 passed all

other criteria. The requirement thatLu(zb) be larger than

the top bin estimate of Lu [first inequality of (23)] ac-

counted for 10 rejected profiles and for the remaining 3

unique rejections. For this dataset (but perhaps not for

future datasets), if we had used only these three quality

control criteria [(22), (25), and first inequality of (23)], we

would have arrived at the same final dataset as we did

with the full set of criteria.

The observed Gi are relatively consistent in time

(Fig. 4), although there is an increase in magnitude and

variability of Gi about one year after float deployments,

particularly at 412 and 555nm. The distributions ofGi for

both satellites at all four wavelengths have Gaussian-like

properties (Fig. 5). For all sets of measurements except

the comparison toMODISAqua at 555nm,Kolmogorov–

Smirnov tests fail to reject the hypothesis that theGi have

Gaussian distributions. The standard deviation gives a

reasonable estimate of the range of observations, with

2sG being similar to S95H at all but 555nm.

Statistics forG are given in Tables 3 and 4, but we note

that the sample sizes are small, particularly for VIIRS

TABLE 4. VIIRS statistics. Symbols as in Table 3.

l G eG 2sGffiffiffiffi
N

p
sG S95H Kurtosis S50 MAPD EAPD r2 a1 a0 3 100 RMSD 3 100 Rsi 3 100

412 1.030 1.017 0.054 0.105 0.215 5.353 0.098 0.077 0.063 0.741 1.207 20.200 0.097 1.127

443 0.990 0.990 0.056 0.108 0.216 4.772 0.091 0.074 0.042 0.699 1.063 20.071 0.081 0.926

488 0.986 0.979 0.041 0.080 0.149 4.169 0.088 0.060 0.047 0.593 0.866 0.077 0.047 0.662

555 0.994 0.968 0.059 0.115 0.195 3.234 0.157 0.089 0.071 0.009 20.062 0.172 0.018 0.164

FIG. 3. Example of typical shallow observations from a profile of the Atlantic A float. (a) Upwelling

radiance; color symbols show individual observations in different wavelengths. Yellow lines show results

of least squares fits of (1) to observations in each bin, and gray dots show the best-fit estimate of radiancecLu(zm) in each bin. Bin boundaries are shown by the breaks between the line segments. (b) Heading

(clockwise from north) during ascent. (c) Tilt in the x and y directions during ascent. For tilt and heading,

all values are shown. For Lu only values with tilt less than 58 are shown.
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FIG. 4. The Gi vs time since float deployment. Symbols (shapes and colors) denote different

wavelengths. Horizontal lines show constant values of G equal to 0.9, 1, and 1.1.
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matchups. Median and mean G are similar, differing by

only a few percent in the worst cases. Because of the

larger number of good matchups, the standard errors of

G estimates is smaller forMODISAqua than for VIIRS,

even in cases of larger sG. In two cases (443 and 555 nm

for MODIS Aqua), differences of G from 1 are statisti-

cally significant, suggesting the possibility of biased er-

rors in either the float or satellite estimates of Rrs.

The Gi for each float are similar and show similar

variability (Fig. 6). Only three floats were operational

for more than one year, and one of those (Hawaii A) had

limited observations because a malfunction in the Ed

sensor affected sampling of the remaining optical sen-

sors. The other floats with long records, Hawaii B and

Atlantic A, show the elevated Gi that are apparent in

Fig. 4. In both floats the Gi are high in the first third of

the year, but the elevation occurs earlier in Hawaii B

than in Atlantic A. For Hawaii B and Atlantic A, the

largestGi occur at solar zenith angles between about 308
and 508, but the relationship between Gi and zenith

angle is not consistent across all floats (Fig. 7). For At-

lantic B there is little variation in Gi with zenith angle,

but that float did not have observations during the times

when the most variation in Atlantic A occurred. The

elevated Gi occur in all wavelengths but are most no-

ticeable in the 412- and 555-nm bands (Fig. 8). Vari-

ability in Gi does not appear to be well correlated with

deployment region or diffuse attenuation coefficient.

In addition toGi, we also made direct comparisons of

Rrs (Fig. 9). For the three shorter wavelengths, we find

similar variability across the range of observations of

Rrs, and the comparison givesmoderate to high r2 (Tables

3 and 4). For 555nm, however, we find that the range of

variability of the in situRrs estimates ismuch smaller than

the range of variability of the satellite estimates. Values

of r2 for 555nm are correspondingly low.

4. Analysis of method and uncertainty

Uncertainty in Rrs estimates is introduced from many

sources. Some uncertainties have direct effects on esti-

mates of KL, and some have direct effects on estimates

of Lu(zb). Both of these affect estimates of Lw. Addi-

tional uncertainty is introduced in the computation of

FIG. 5. Distribution of Gi, compared to a Gaussian distribution. Cyan histogram shows relative

abundance of observedGi, normalized so that its integral is 1 (bin width: 0.05). Magenta background and

curve show Gaussian probability density function with the same mean and standard deviation as ob-

servations. Blue line shows cumulative distribution of observations. Orange line shows cumulative dis-

tribution of aGaussian. The cumulative distribution functions have been rescaled by the axis height. Note

different x-axis scale for MODIS 412- and 555-nm bands.
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Rrs from Lw and Es. In the following section, we discuss

sensor calibration (briefly), individual sources of un-

certainty, and possible direct effects of these uncertainties

on quantities derived from each measurement. We then

discuss a Monte Carlo model that incorporates most of

the likely uncertainty sources to determine an integrated

uncertainty in the estimates of Lw.

The sensors used in this study respond to radiance

according to

L
uCAL

5 c
1
(L

uRAW
2 c

0
) , (26)

where LuCAL is a calibrated value in physical units and

LuRAW is a value in uncalibrated instrument counts. The

calibration constants c1 and c0 are determined prior to

deployment. Using the c0 determined at the factory or a

value of c0 determined from measurements at the park

depth of 1000m led to differences in near-surface LuCAL

typically less than 0.05%. This suggests that the near-

surface radiances are large enough that values of LuCAL

are relatively insensitive to uncertainty in c0. Previous

assessment of the radiometer calibration procedure de-

termined that calibration uncertainty in radiance estimates

is 2%–3% (Hooker et al. 2002; Voss et al. 2010).

a. Uncertainty in KL

If KL is constant with depth, then estimates of KL

are independent of the calibration coefficient c1. This

FIG. 6. TheGi vs yearday are shown separately for each float. MODISAqua only. Yearday 1.5 is noon

on 1 Jan, and yeardays are repeated for floats that were deployed formore than one year. Symbols denote

different wavelengths as in Fig. 4. Lines show values of 0.9, 1, and 1.1.
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is because KL is estimated from (1) using relative

magnitudes of Lu. Changes in the c1 due to elec-

tronic variation, biofouling, or other sources will not

affect estimates of KL. Here we examine the effect

of sample resolution, shading, and bin size on KL

estimates.

Zibordi et al. (2004) examined the effects of sample

resolution on estimates of several radiometric quantities,

including Lu, downwelling irradiance (Ed), and diffuse

attenuation coefficient for downwelling radiance (Kd).

Several environmental, sampling, and analysis differ-

ences cause challenges in extrapolating uncertainties

from their results to our measurements, but their work

offers some guidance. In the coastal waters studied by

Zibordi et al. (2004), spatial resolution of one sample

every 4–6 cm is more than sufficient to give accuracies of

bin estimates of Lu within;1%. Although Zibordi et al.

(2004) do not give results for accuracy of KL estimates,

they found that the relative uncertainty inKd was roughly

twice as large as the uncertainty in Ed. Extrapolating this

proportionality to KL and Lu suggests that for samples

spaced every 4–6 cm, uncertainty in estimates of KL may

be of order 2% in coastal waters. Given higher un-

certainty in clear water, we expect that the uncertainty in

KL related to the spatial resolution of our sampling is on

the order of 2%–5%. As discussed below, overall un-

certainty in KL estimates is likely larger.

Shading varies as the float heading changes during

ascent. To quantify the effects of shading on the esti-

mates of KL, we compare estimates made using all data

during ascent to estimates made using only data when

the radiometer was on the same side of the float as the

sun. We find that estimates of KL are similar from both

FIG. 7. TheGi vs float solar zenith angle. MODISAqua only. Lines

show values of 0.9, 1, and 1.1.

FIG. 8. TheGi vsKL are shown separately for each wavelength.MODISAqua only. Symbol colors denote

float deployment region. Lines show values of 0.9, 1, and 1.1.
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sets of allowed azimuths (Fig. 10), with variability in

their agreement. We computed sfKL and h fKLi using the
measurements from the sunny side of the float as the

reference quantity, with the angle brackets denoting a

mean over all profiles. We found sfKL of 23%–30% and

h fKLi of negative 4%–6%. Standard errors are all of

order 4%–5%, so the bias introduced by using all azi-

muths rather than sunny-side-only measurements is

likely not statistically significant. Using measurements

only from the sunny side reduced the number of profiles

passing quality control by about 45%.

To understand some the effects caused by our choices

of bin size, we performed our analysis using different

values of bin size. We used only profiles that passed the

quality control checks for both the float and satellite

data, and we quantify the variability in KL estimates by

examining fKL, defined using (18). All KL values in this

analysis are for the top bin, and we omitted the Hawaii

A float because of its sparse data. Here the statistics sfKL

and h fKLi compare bin sizes of 2, 4, and 5m to reference

values of 3-m bins. These bin sizes are all smaller than

vertical attenuation lengths 1/KL, which for most pro-

files are larger than 10m (and generally larger than 20m

for the shorter wavelengths). Variability inKL estimates

using different bin sizes is larger than for the shading

comparison above, with sfKL of order 20%–30%

(Fig. 11). Means of normalized differences over all

profiles, h fKLi, are positive for all bin sizes compared to

the 3-m bins. For the 4- and 5-m bins, h fKLi is slightly
larger than twice the standard error, suggesting that the

choice of bin size may cause a bias in estimates of KL.

The values of sfKL for the shading and bin size es-

timates suggest that the confidence interval for our KL

estimates is somewhat large. To determine the effect

of error inKL on estimates ofLw, we used (2) to project

Lu upward to the sea surface from21.12-m depth. For

FIG. 9. Scatterplots ofRrs. Vertical axes are float estimates. Horizontal axes are satellite estimates. Blue

is MODIS Aqua. Red is VIIRS. Black lines are 1:1, and thin colored lines show the least squares major

axis fits to the observations.
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this analysis we use three representative values of

KL (0.03, 0.05, and 0.1m21) and vary them by 65%,

10%, 20%, and 40%. For an arbitraryLu(zb), we compute

a simulated ‘‘true’’ value of Lw with the representative

values of KL and compare it to ‘‘error’’ values of Lw that

are computed with the values ofKL varied by65%, 10%,

20%, and 40%. The ratiosLw,error/Lw,true are displayed in

Table 5. We find that errors in Lw are generally smaller

than 2.5%, except in the cases of large error inKL or large

values of KL itself. This suggests that for visible wave-

lengths in most open ocean conditions (KL � 1/jzbj),
highly accurate measurements ofKL are not essential for

reasonable accuracy ofLw estimates, as long as the errors

inKL are random. Error inKL could be a larger source of

FIG. 10. Comparison of estimates of diffuse attenuation coefficient in top bin using measurements from

all azimuths (vertical axes) and measurements only when the radiometer was on the sunny side of the

float. Black line is 1:1.

FIG. 11. Comparisons ofKL estimates using different bin sizes. (a) TermKL computed using alternative

bin sizes compared to KL computed using 3-m bins. Black line is 1:1. (b) Mean of fKL, indicating the

relative bias. Error bars are twice the standard error of fKL. (c) Coefficient of variation of KL estimates

(standard deviation of fKL). Symbol shapes denote wavelength as in previous figures. In (a), colors in-

dicate the bin size. In the other panels colors indicate wavelength as in previous figures.
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error in Lw for wavelengths at which KL approaches

1/jzbj. Any bias in KL estimates will lead to bias in Lw

estimates, including possible bias fromRaman scattering,

which is likely more important at the longer wavelengths.

b. Uncertainty in Lu(zb)

Measurements of Lu(zb) during the buoy phase of

the profile are sensitive to the calibration constant

c1 [(26)] and any effects of biofouling on this value. The

measurements are also sensitive to environmental condi-

tions that include the effects of wave focusing, sensor tilt,

and self-shading. Following (2) and (3), errors in Lu(zb)

lead to errors in Lw of the same relative magnitude.

Because we did not retrieve the floats after deployment,

we have no way to directly assess changes in c1 over time,

either from changes in the sensor or from biofouling. The

Gi estimates appear stable through time (Fig. 4), but their

variability is large enough that we cannot use the stability

of Gi to determine with certainty whether c1 meet the

requirements for long-term stability for vicarious calibra-

tion (Mueller et al. 2003a;GCOS2011;Zibordi et al. 2015).

Based on the work of Stramska andDickey (1998) and

Wei et al. (2014), we expect that wave-induced light

fluctuations at our measurement depth of zb 521:12m

occur with a peak frequency of 0.3–1Hz or higher. In

addition, the effect of light flashes on Lu is likely to be

smaller than the effect of flashes on the more commonly

studied Ed (Stramska and Dickey 1998; Zibordi et al.

2004; D’Alimonte et al. 2010). Because our measure-

ments integrate 0.933 s out of every second, they likely

capture the most light flashes associated with wave fo-

cusing. This likely allows accurate Lu(zb) estimates

with a relatively small number of samples.

Our estimates of Lu(zb) are, unfortunately, limited by

small sample sizes. In 60 out of 65 profiles, the float made

10 or more low-tilt measurements in its buoy phase, but

only 32 of the profiles had 10 or more buoy phase mea-

surements at both low-tilt and favorable azimuthal ori-

entation. The BOUSSOLE profiles had longer surface

intervals than the other floats, which allowed us to char-

acterize some of the variability in the near-surface sam-

ples, and we examine nine profiles from these floats (with

relaxed QC criteria that allow more variability in the

ascent phase data). The buoy phases of these profiles had

between 30 and 361 samples over 5–10min. Coefficients

of variation for the buoy phase radiance measurements

in each profile are between 1% and 6%. We estimated

Lu(zb) using subsets of measurements from these

BOUSSOLE profiles. For subsets with 10 and 5 mea-

surements, 92% and 88% of the subsets, respectively,

hadmeans ofLu(zb) within 2%of the estimates from the

full surface dataset for the given profile.

To analyze the uncertainties associated with our shad-

ing correction, we compared our shading correction

with results from Simulation Optique (SimulO), an IOP-

driven Monte Carlo simulation (Leymarie et al. 2010;

http://omtab.obs-vlfr.fr/SimulO). We ran SimulO using

a chlorophyll-based bio-optical model (Morel and

Maritorena 2001) and a representative open ocean

chlorophyll concentration of 0.1mgm23 and no contri-

bution from skylight. For the solar zenith angles in our

study and relative solar azimuths of 61208 (where 08 is
defined as the sun being on the same side of the float as

the radiometer), we found that the two shading models

had similar shapes and magnitudes, with mean shading

corrections of ,1% (Fig. 12). However, the heading

uncertainty leads to uncertainty in the corrected Lu of

a few percent in the worst cases (large relative azimuth

and small solar zenith angle). At 412- and 555-nm wave-

lengths, the Leathers et al. (2004) model predicted a

shading larger on average than SimulO by less than 0.1%,

although for larger chlorophyll concentrations this pos-

sible bias increases (not shown).

Taken together, these analyses suggest that the overall

uncertainty inLu(zb) estimates due to environmental and

measurement variability is on the order of 2%–3%, sim-

ilar to the estimate by Zibordi andVoss (2014) for generic

in-water measurements. Uncertainty in the calibration

(also likely 2%–3%; Hooker et al. 2002; Voss et al. 2010)

will raise the total uncertainty of Lu(zb) to roughly 4%.

c. Other sources of uncertainty in Rrs

Our estimates ofRrs have other sources of uncertainty.

Here we examine the possible effects of measuring or

modeling downwelling irradiance and the bidirectional

reflectance correction.

1) DOWNWELLING IRRADIANCE

By using model estimates of Es, we eliminate one

source of potential discrepancy between float and

TABLE 5. Errors in Lw caused by inaccurate KL. Left column gives ‘‘true’’ KL. Other columns give Lw,error/Lw,true computed using

inaccurate values KL, with the error given in the top row.

KL (m21) 240% 220% 210% 25% 15% 110% 120% 140%

0.030 0.987 0.993 0.997 0.998 1.002 1.003 1.007 1.014

0.050 0.978 0.989 0.994 0.997 1.003 1.006 1.011 1.023

0.100 0.956 0.978 0.989 0.994 1.006 1.011 1.023 1.046
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satellite Rrs estimates. However, the model we used for

Es (Frouin et al. 1989) is not exactly the same as that

used in the satellite atmospheric correction algorithm

(Gordon andWang 1994; Franz et al. 2007). Bothmodels

are based on assumptions about atmospheric properties,

but the satellite processing uses near-infrared measure-

ments to determine atmospheric aerosol composition,

whereas the Frouin et al. (1989) model relies on modeled

aerosol composition. A comparison of Es predictions

suggests that using these two different atmospheric

models has small but nonzero effects on estimates of Gi.

We compare them using the ratio RE of the satellite es-

timate to the Frouin estimate of Es,

R
E
5

E
s
(satellite)

E
s
(Frouin)

, (27)

for the 65 observations that passed satellite and float

quality control (Fig. 13c). For each wavelength RE has

both means and standard deviations of ;1%–2%. The

means of RE are further than two standard errors from a

value of one, suggesting that there may be a small but

statistically significant bias in the Frouin estimates

compared to the satellite estimates.

2) BIDIRECTIONAL REFLECTANCE CORRECTION

The Morel et al. (2002) normalization uses viewing

geometry and chlorophyll concentration ([Chl]) as

inputs. Assuming that the viewing geometries can be

exactly calculated, uncertainties associated with this

normalization emerge from the estimation of [Chl],

which is determined using a reflectance band ratio

(O’Reilly et al. 1998, 2000). We estimated uncertainty

in the correction factor F by estimating variable values

of F using a simplified Monte Carlo simulation and the

in situ geometry. For each profile we introduced vari-

ability into the [Chl] input and computed F with these

variables [Chl]. Repeated iterations gave standard de-

viations in F that converged to less than 1.5% for most

profiles at all wavelengths. We chose distributions of

[Chl] that varied around each profile’s estimate with a

median absolute percent difference of about 26% as in

Bailey andWerdell (2006). This empirically determined

value for variability accounts in an integrated way for

uncertainty in Rrs and uncertainty in determining [Chl]

from Rrs.

d. Global uncertainties using Monte Carlo
simulations

We examine the combined effects of measurement

variability on our estimates of Lw using Monte Carlo

simulations of float measurements during the ascent

and buoy phases. The simulations begin with a noise-free

FIG. 12. Comparisons of Leathers and SimulO shading correc-

tions at 555 nm, [CHL] 5 0.1mgm23, only for cases where the

optics package is on the sunny side of the float. (top),(middle) The

colors are the ratio Lu,shaded/Lu,actual, where Lu,shaded is computed

with either the Leathers or SimulOmodel. Shading should produce

values smaller than 1. Much of the variability in SimulO values,

including values larger than 1, are likely the result of Monte Carlo

noise and suggest uncertainty of 1% or less in individual shading

estimates from SimulO. (bottom) The ratio of the top two panels.
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reference profile Lu,true that represents the truth. In

5000 iterations we construct noisy profiles that repre-

sent observations. To construct the noisy profiles, we

subsample the reference profile with 5-cm resolution

during the ascent phase, use 10 samples in the buoy

phase, and add several sources of variability. These

include error in the observation depth (during the as-

cent phase), possible bias in the shading correction

(during buoy phase), effects of tilting, effects of wave

focusing, variability in sensor response, and unbiased

errors in the shading correction. Then, using the same

methods as are described in section 2, we computeLw for

each noisy profile and compare it to the water-leaving

radiance for the reference profile, Lw,true. The reference

profile uses parameters that are representative of values

in this study: Lw,true 5 1mWcm22 nm21 sr21 and diffuse

attenuation coefficient KL,true 5 0:03m21. The simulated

radiance measurements had Gaussian variability about

the profile of Lu,true, and a coefficient of variation of

CVLu 5 0.04 (our observations of CVLu were generally

between 0.015 and 0.05).

The results of the Monte Carlo simulations show that

unbiased uncertainty in the observations gives unbiased

estimates of Lw (Fig. 14) and Lu(zb) (not shown). As

might be expected, bias in the shading correction leads

to bias in radiance estimates of the same relative size.

We found the normalized standard deviation of the

Lu(zb) estimates, sLu/Lu(zb), to be ;1.4%, consistent

with the 2%–3% uncertainty due to environmental/

measurement variation estimated from the observations

(using a 2s confidence interval). The variability of sim-

ulated Lw is larger than the variability in simulated

Lu(zb) (as expected), but smaller than the variability of

observational estimates of G, with sLw/Lw, of ;2%

(Monte Carlo simulations) and sG between 7% and 19%

(observations). Increasing the variability of the noisy

profiles in the simulations does have some effect on the

simulated output, but not enough to explain the dis-

crepancy between sLw and sG. Increasing the noise in the

profiles by a factor of 3–4 increases the variability in es-

timates ofLw by a similar amount. Increasing the noise in

the buoy phase measurement has a larger effect than in-

creasing the noise in the ascent phase measurement be-

cause the ascent data are used only in estimating KL.

These results suggest one or more of the following:

1) uncertainty in observed Lw is larger than predicted by

the Monte Carlo simulations [likely due to uncertainty in

extrapolation rather than Lu(zb)]; 2) radiometer cali-

bration uncertainty is larger than 2%–3%; 3) uncertainty

in converting observed Lw to Rrs is not negligible (due to

estimatingEs or the bidirectional reflectance correction);

and 4) uncertainty in the satellite estimates of Rrs con-

tributes to uncertainty in estimates of G.

Because the Monte Carlo simulations compute

estimates ofKL in each profile, we can compare these

results to the uncertainties estimated for those

quantities in section 4a. The mean of all estimated

values is unbiased, with hKL/KL,truei’ 1:002. The co-

efficient of variation of simulated KL estimates is

about 0.3 (not shown), which is similar to, but slightly

smaller than, the variability estimated by computing KL

from observations using different bin sizes (as shown in

Fig. 11d). This gives us some confidence in our estimates

of variability in KL.

FIG. 13. Comparison of Es computed during satellite data pro-

cessing to the Frouin model of Es for the same times and locations.

Lines show mean ratios.
FIG. 14. Estimates ofLw normalized by reference value fromMonte

Carlo simulations. Yellow line shows a reference value of 1.
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5. Discussion

a. Quality of possible float-based validation

At most wavelengths for MODIS and VIIRS, values

ofG and eG differ from 1 by a few percent (Tables 3 and

4). Except for comparisons with MODIS at 443 and

555 nm, G cannot be distinguished statistically from 1

using twice the standard error as a confidence interval.

Thus, within observational precision, these mean es-

timates of Rrs match the satellite estimates. For

MODIS, G is less than 1 by 6% at 443 nm and greater

than 1 by 12% at 555nm. For both satellites, the 555-nm

comparisons are not as good as the comparisons at

other wavelengths, with low r2, relatively high sG,

and a larger range of values in the satellite estimates

than the float measurements. This disagreement is

more notable for MODIS than for VIIRS. In addition,

some values of Gi are larger at zenith angles above

about 258, which is most notable in MODIS Aqua in

the 412 and 555 bands.

We compared the quality of float data to that of

MOBY by examining Rrs matchups between satellites

and MOBY. These MOBY observations were, following

Bailey and Werdell (2006), extracted from the SeaWiFS

Bio-Optical Archive and Storage System (SeaBASS)

database (http://seabass.gsfc.nasa.gov/seabasscgi/search.

cgi). The MOBY data are available as a preliminary

product and include the observations used for vicarious

calibration and additional observations. The quality

control and data processing are similar but slightly

different for these data as for data used in vicarious

calibration (http://seabass.gsfc.nasa.gov/wiki/article.

cgi?article5MOBY). The quality control thresholds on

satellite data are the same as used for our float com-

parisons, and they are less stringent than the quality

control criteria used for vicarious calibration.

Direct comparison of MOBY to satellite estimates of

Rrs show that the float observations perform similarly to

this expanded set of MOBY observations at all wave-

lengths (cf. Figs. 15 and 9). The bulk statistics ( eG, EARD,

and RMSD) comparing in situ observations with MODIS

Aqua are similar in quality for floats andMOBY(Fig. 16),

although the wavelength dependence of mismatches is

different. The variability ofG in the MOBY comparisons

is likely a product of the looser quality control in the

validation dataset than in the data used for calibration.

We have been unable to determine the cause of the

disagreement between in situ and satellite Rrs estimates

at 555 nm.We also examinedMOBY andMODISAqua

Rrs at 547 nm, for which the satellite sensor is better

suited to ocean color (the 555-nm band is optimized for

terrestrial observations). The comparison at 547 nm

is similar to the comparison at 555 nm. That the

in situ–satellite disagreement exists in both float and

MOBY comparisons indicates that difficulty in Rrs

estimates for green wavelengths is not simply a

problem with the floats. It is likely due to measure-

ment difficulties or atmospheric correction errors.

One possible in-water cause is Raman scattering,

which may be particularly problematic at green

wavelengths in oligotrophic conditions (Waters 1995;

Westberry et al. 2013).

The general agreement between float and satellite

estimates of Rrs suggests that the floats are likely to be

useful platforms for validation of radiometric satellite

data products. The disagreements described above

suggest that more work is needed to fully understand the

behavior of some wavelength bands. A more ambitious

goal would be to use the floats for vicarious calibration

of ocean color satellites, but it is beyond the scope of this

analysis to test the capability of the floats to perform

vicarious calibration. We interpret the statistical simi-

larity of G from floats and MOBY as suggesting that

floats may be capable of returning data with quality as

high as that for MOBY, but more work is needed to

determine whether the data from floats have sufficient

stability to enable their use for vicarious calibration.

b. Recommendations

The floats that we used were modified versions of

traditional APEXfloats and were not fully optimized for

radiometer measurements. Several improvements could

be made so that the next generation of autonomous ra-

diometry floats achieves more high-quality matchups

and gives more precise (and possibly more accurate)

estimates of Rrs. Improvements could be made to the

vehicle design, instrumentation, sampling strategy, and

analysis.

Starting with physical design, minimizing shading is

extremely important. A float with twoLu sensors on arms

that extend less than 1m in opposite directions from the

float body is a design that has been developed and tested

by other researchers using a PROVOR float (ProVal

project; E. Leymarie 2016, personal communication).

With this configuration, one radiometer is always on the

sunny side of the float and the shading is confined largely

to the effect of the radiometer itself. Dual radiometers

can also provide an estimate of measurement uncertainty

and redundancy in the event of failure of one radiometer.

A dual radiometer design must, however, minimize the

effects on physical stability of the float.

We did not use our Es measurements in this study, in

part because our irradiance sensors were optimized for

in-water measurements. For in situ measurements of Es,

we recommend using a dedicated in-air sensor. We did

get important information from the failure of the Ed

2348 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 33

http://seabass.gsfc.nasa.gov/seabasscgi/search.cgi
http://seabass.gsfc.nasa.gov/seabasscgi/search.cgi
http://seabass.gsfc.nasa.gov/wiki/article.cgi?article=MOBY
http://seabass.gsfc.nasa.gov/wiki/article.cgi?article=MOBY


sensor on the Hawaii A float. This failure caused the

sampling computer to wait long times between samples

of all instruments, which minimized the number of Lu

measurements. This reinforces the importance of de-

signing and thoroughly testing autonomous floats with

complex sensor suites to respond gracefully to individual

sensor failures.

The effects of tilting could be reduced by higher-

frequency sampling of radiometric quantities and float

orientation. Ideally, these would average over short times

and would be at rates faster than the natural oscillation

frequency of the float. Higher-frequency measurements

will lead to increased data volume, so onboard averaging

(to perhaps 1Hz) may become necessary.

We had a limited number of surface samples (,10) for

many profiles because of restrictions on tilt and azi-

muthal orientation. Future efforts should ensure that

sufficient measurements are made to allow rejecting

unfavorable samples without causing the number of

available samples to be too small. To avoid unnecessary

time at the surface in poor conditions, onboard decision-

making (based onEs) could assess whether conditions are

favorable for good Lw measurements. If so, then ex-

tended buoy phase measurements could be undertaken.

The Lu sensors could be located higher on the float

body so that they are closer to the surface when taking

their near-surfacemeasurements. This would help reduce

extrapolation errors due to poor estimates of KL. How-

ever, having Lu measurements too close to the surface

could increase the risk of the radiometers broaching the

surface or lead to contamination by bubbles. Optimizing

these trade-offs will require further study.

We note that parking the float at deep depths

(;1000m) seemed to be effective at minimizing fouling

of the Lu sensors and most of the Ed sensors. Our floats

profiled every other day, and each profile lasted several

hours from the start to the float’s return to park. If future

floats profile daily, they will spend a relatively smaller

length of time at park, possibly reducing the antifouling

effects of the deep parking.

FIG. 15. Scatterplots of Rrs. Vertical axes are MOBY estimates. Horizontal axes are satellite estimates. Blue is

MODIS Aqua. Red is VIIRS. Shapes correspond to wavelength as in previous figures. Black lines are 1:1.
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Finally, if autonomous floats are to be used for

vicarious calibration activities, hyperspectral sensors

and retrieval of the floats to assess changes in calibration

or fouling are recommended if possible. This is espe-

cially important for the 0.5% stability recommended for

long-term records for use in climate studies (GCOS

2011; Zibordi et al. 2015).

6. Conclusions

This study shows that autonomous floats can be used for

in situ validation of satellite estimates of remote sensing

reflectance in the ocean. We made estimates of remote

sensing reflectance usingwater-leaving radiance estimated

from in situ observations and downwelling irradiance de-

termined from a clear-sky model, and we compared these

with satellite estimates of Rrs. The comparison showed a

variability of several percent. Our comparisons have sim-

ilar variability to satellite–in situ comparisons made using

validation data from MOBY. Both floats and MOBY

found poor agreement between in situ and MODISAqua

estimates of Rrs in the 555-nm band.

We examined sources and magnitudes of uncer-

tainty in our estimates of Lw using both observa-

tions and a Monte Carlo model. This analysis suggested

that we were able to estimate water-leaving radiance

with a precision of ;5% (including uncertainty due to

environmental/measurement variability and calibra-

tion). As well as we could determine, our analytical

procedure gave estimates of Lw that were unbiased.

However, statistically significant average differences

were found in the comparison of float andMODISAqua

estimates of Rrs at two wavelengths. Understanding the

cause of this bias is necessary for use of these platforms

for ocean color product validation.
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