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The EPIC/DSCOVR observations of the Earth’s surface lit by the Sun made from the first
Lagrange point several times during the day in spectral bands centered on 443, 551, and
680 nm are used to estimate daily mean photosynthetically available radiation (PAR) at the
ice-free ocean surface. The PAR algorithm uses a budget approach, in which the solar
irradiance reaching the surface is obtained by subtracting from the irradiance arriving at the
top of the atmosphere (known), the irradiance reflected to space (estimated from the EPIC
Level 1b radiance data), taking account of atmospheric transmission and surface albedo
(modeled). Clear and cloudy regions within a pixel do not need to be distinguished, which
dismisses the need for often-arbitrary assumptions about cloudiness distribution within a
pixel and is therefore adapted to the relatively large EPIC pixels. A daily mean PAR is
estimated on the source grid for each EPIC instantaneous daytime observation, assuming
no cloudiness changes during the day, and the individual estimates are remapped and
weight-averaged using the cosine of the Sun zenith angle. In the computations, wind
speed, surface pressure, and water vapor amount are extracted from NCEP Reanalysis 2
data, aerosol optical thickness and Angström coefficient from MERRA-2 data, and ozone
amount from EPIC Level 2 data. Areas contaminated by Sun glint are excluded using a
threshold on Sun glint reflectance calculated using wind data. Ice masking is based on
NSIDC near-real-time ice fraction data. The product is evaluated against in situ
measurements at various locations and compared with estimates from sensors in polar
and geostationary orbits (MODIS, AHI). Unlike with MODIS, the EPIC PAR product does
not exhibit gaps at low and middle latitudes. Accuracy is satisfactory for long-term studies
of aquatic photosynthesis, especially given the much larger uncertainties on the fraction of
PAR absorbed by live algae and the quantum yield of carbon fixation. The EPIC daily mean
PAR product is generated operationally on a Plate Carrée (equal-angle) grid with 18.4 km
resolution at the equator and on an 18.4 km equal-area grid, i.e., it is fully compatible with
the NASA Greenbelt OBPG ocean-color products. Data are available since the beginning
of the DSCOVR mission (i.e., June 2015) from the NASA Langley ASDC website.
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1 INTRODUCTION

The solar energy flux reaching the ocean surface in the spectral
range 400–700 nm, referred to as photosynthetically available (or
active) solar radiation (PAR), controls the rate of photosynthesis
by phytoplankton and therefore the development of crustaceans,
fish, and other consumers (e.g., Ryther, 1956; Platt et al., 1977;
Kirk, 1994; Falkowski and Raven, 1997). It ultimately regulates
the composition of marine ecosystems. Sunlight absorbed
differentially by the upper ocean affects mixed-layer dynamics
and oceanic currents (e.g., Nakamoto et al., 2000, 2001;
Murtugudde et al., 2002; Sweeney et al., 2005; Ballabrera-Poy
et al., 2007), with local and remote consequences on atmospheric
temperature and circulation (e.g., Miller et al., 2003; Shell et al.,
2003). Absorption by phytoplankton and other water
constituents tend to reduce the planetary albedo, i.e., warm
the planet (Frouin and Iacobellis, 2002). Knowing the
spatiotemporal distribution of PAR over the oceans is critical
to understanding biogeochemical cycles of carbon, nutrients, and
oxygen and biological-physical interactions (a major uncertainty
in coupled climate models) and, therefore, to addressing
important global change issues such as the fate of
anthropogenic atmospheric carbon dioxide and making
accurate projections of future climate (e.g., Frouin et al., 2018a).

Regional and global maps of PAR at the ocean surface can be
obtained from a variety of passive Earth-viewing satellite optical
sensors. The sensors operating from geostationary altitude
provide adequate temporal sampling to deal with cloud
diurnal variability but have degraded spatial resolution at high
latitudes, and they only cover part of the oceans, i.e., several
sensors, optimally positioned are necessary to provide global
coverage. Sensors in polar orbits provide the same spatial
resolution at all latitudes but pass less frequently over the
same target at middle and low latitudes. For ocean primary
productivity computations, it is convenient to estimate both
PAR and bio-optical variables (phytoplankton chlorophyll
abundance, absorption coefficients) from the same sensor.
Ocean-color sensors offer this capability, even though they are
principally designed to retrieve water reflectance if they do not
saturate over clouds. The same data preprocessing is required,
i.e., PAR can be produced with little extra effort as part of the
same processing line. In this way, the key variables in primary
production modeling are provided together at the same
resolution, facilitating studies of photosynthesis and ecosystem
dynamics.

In this context, a simple yet efficient and fairly accurate
algorithm has been developed to estimate the daily mean PAR
at the ocean surface from Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) data (Frouin et al., 2003) and adapted for application
to MODerate resolution Imaging Spectroradiometer (MODIS)
data (Frouin et al., 2012), GLobal Imager (GLI) data (Frouin and
Murakami, 2007), GOCI data (Frouin andMcPherson, 2013; Kim
et al., 2016), Medium Resolution Imaging Spectrometer (MERIS)
data, Visible Infrared Imaging Radiometer Suite (VIIRS) data,
Second-generation Global Imager (SGLI) data, and Advanced
Hiwamari Imager (AHI) data with plans for an extension to
future ocean color sensors. Daily mean PAR refers to the 24-h

averaged planar quantum energy flux from the Sun in the spectral
range 400–700 nm. It is expressed in units of Einstein per meter
squared per day, i.e., Em−2d−1. The global daily mean PAR
products from SeaWiFS, MODIS, VIIRS, and MERIS data
have been routinely generated by the National Aeronautics
and Space Administration (NASA) Ocean Biology Processing
Group (OBPG) and made available to the user community from
their website (https://oceancolor.gsfc.nasa.gov). Estimated
uncertainty, based on comparisons against in situ
measurements, expressed in relative root-mean-square (RMS)
difference and bias, is typically 10-30% and 4-9%, respectively,
depending on satellite sensor and atmospheric conditions (Frouin
et al., 2003; Frouin et al., 2012; Laliberté et al., 2016; Ramon et al.,
2016; Somayajula et al., 2018). Somayajula et al. (2018) compared
satellite-based PAR algorithms used in primary production
studies; they concluded that the best overall performance was
obtained with the NASA OBPG algorithm. This uncertainty is
reasonable for large-scale studies of aquatic photosynthesis (e.g.,
Frouin et al., 2012; Frouin et al., 2018a), but better accuracy is
desirable. Note, in this respect, that primary productivity models
depend not only on PAR but also on efficiency factors that are
difficult to estimate with uncertainty comparable to (i.e., as low
as) that of PAR.

The standard Level-2 and -3 PAR products generated by the
NASA OBPG have been used extensively in the science
community for a variety of applications. In primary
productivity calculations, they have replaced PAR estimates
obtained from a clear sky model corrected for cloudiness using
fractional cloud coverage or deduced from satellite estimates of
total solar irradiance, the treatment applied in Longhurst et al.
(1995), Antoine et al. (1996), and Behrenfeld and Falkowski
(1997) to obtain the first global maps of seasonal and/or
annual oceanic primary productivity from space. Such
treatment is limited, because the effect of clouds on PAR does
not depend only on fractional coverage, but also on optical
thickness, and the relation between total solar irradiance and
PAR, rather constant under clear skies (Baker and Frouin, 1987),
varies strongly with water vapor and cloud liquid water content
(Frouin and Pinker, 1995). Studies using the NASA OBPG PAR
products have addressed a variety of topics, including biosphere
productivity during an El Niño transition (Behrenfeld et al.,
2001), chlorophyll-a and carbon-based ocean productivity
modeling (Behrenfeld et al., 2005; Platt et al., 2008), climate-
driven trends in productivity (Behrenfeld et al., 2006; Kahru et al.,
2009; Henson et al., 2010), phytoplankton class-specific
productivity (Uitz et al., 2010), inter-comparison of
productivity algorithms (Carr et al., 2006; Lee et al., 2015),
and the relation between primary productivity, vertical mixing,
and atmospheric input (Tang and Shi, 2012). They have also been
used to check the stability of CERES measurements (Loeb et al.,
2006).

The parameters governing PAR variability are essentially the
Sun zenith angle and the cloud transmittance. Aerosol properties
and surface albedo have a smaller impact. Since the Sun zenith
angle can be computed precisely, estimating daily PAR from data
collected by a single sensor aboard a Sun-synchronous satellite is
chiefly limited, in terms of accuracy, by the lack of information
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about diurnal variability of cloud properties, especially at low and
middle latitudes. This variability may be large in some regions, as
evidenced by the International Cloud Climatology Project
(ISCCP) cloud analyses (Bergman and Salby, 1996; Rossow
and Shiffer, 1999) and other studies (e.g., Wang and Zhao,
2017; Zhao et al., 2019; Yang et al., 2020). Consequently, the
PAR products from individual polar-orbiting sensors exhibit
biases, not only with respect to ground truth but also between
themselves, as evidenced in inter-comparison and evaluation
studies (Frouin et al., 2003, 2012; Tan and Frouin, 2019).
Merging data from several sensors with different overpass
times may significantly improve the quality of daily PAR
estimates, as demonstrated with MODIS-Terra, SeaWiFS, and
MODIS-Aqua, which cross the equator at approximately 10:30,
12:00, and 13:30 local time (Frouin et al., 2012). In generating a
long-term PAR time series, however, one must deal with various
sensor combinations, and there is a need, for ocean
biogeochemistry studies related to climate change to reduce
the individual biases against in situ measurements and make
the PAR estimates consistent across individual sensors (Frouin
et al., 2018a).

The Earth Polychromatic Imaging Camera (EPIC) onboard
DSCOVR, operating from the first Sun-Earth Lagrange point (L1)
one million miles from Earth (Marshak et al., 2018; https://avdc.
gsfc.nasa.gov/pub/DSCOVR/Web_EPIC/), provides a great
opportunity to generate accurate PAR products and address
issues associated with polar-orbiting sensors. By frequently
observing the sunlit part of the Earth, EPIC inherently allows
one to account properly for diurnal cloud variability, while
maximizing spatial coverage. In other words, EPIC with
respect to PAR can do the job of several geostationary sensors
with the further advantage that spatial resolution at high latitudes
is less of an issue (the L1 orbit is much farther from Earth than the
geostationary orbit). The spectral bands centered on 443, 551, and
680 nm, the non-saturation of measured radiance over clouds,
and the spatial resolution of 10 km at nadir are adequate for PAR
calculations, especially using the NASA OBPG algorithm, which
does not require knowing whether the pixel is clear or cloudy,
i.e., is applicable to large pixels.

In view of the above, the current NASA OBPG daily mean
PAR algorithm has been modified/adapted for application to
EPIC data. Algorithm uncertainties have been associated with
EPIC PAR estimates on a pixel-by-pixel basis. A full processing
line has been created and implemented to generate operationally
daily mean EPIC PAR products at the NASA Center for Climate
Simulation (NCCS). The data are archived at and distributed by
the Langley Atmospheric Science Data Center (ASDC). In
Section 2, the methodology to estimate daily mean PAR from
EPIC data is presented and the various steps to obtain the surface
flux values are detailed. The tasks include integrating atmospheric
functions spectrally and temporally during the day (the number
of observations in a day varies depending on geographic
location), eliminating data contaminated by Sun glint,
incorporating ancillary information such as ozone content, sea
ice extent (for masking), and aerosol optical properties, and
remapping the data to a common grid. In Section 3, a
procedure is described to associate algorithm uncertainties

(i.e., bias and standard deviation) to each EPIC daily mean
PAR estimate as a function of parameters readily available
from applying the algorithm, i.e., daily mean clear sky PAR
and cloud factor (characterizes the effect of clouds on daily
mean PAR). In Section 4, EPIC PAR estimates are compared
to in situmeasurements routinely collected from long-term fixed
buoys. Experimental performance is also compared to that of
MODIS PAR estimates. In Section 5, examples of global daily
mean PAR products are displayed and examined in view of
corresponding MODIS and AHI products, and PAR time
series at contrasted locations are presented to illustrate the
capability of EPIC to describe PAR seasonal to interannual
variability. In Section 6, finally, the EPIC PAR algorithm and
its performance against field data and other satellite estimates are
summarized, advantages and limitations of using observations
from the L1 orbit are pointed out, the significance of the new
ocean PAR product in complementing existing PAR time series
for a wide range of research applications is emphasized, and a
perspective for future work to estimate variables used more
directly in primary productivity or water reflectance models,
such as scalar PAR, spectral PAR, and average cosine of the
light field just below the surface, as well as ultraviolet fluxes, is
provided.

2 ALGORITHM DESCRIPTION

The algorithm estimates daily mean PAR reaching the ice-free
ocean surface, as defined above. Following Frouin et al. (2003), a
budget approach is used, in which the solar flux reaching the
surface is obtained by subtracting from the flux arriving at the top
of the atmosphere (know) the flux reflected to space (estimated
from the EPIC measurements) accounting for atmospheric
transmission and surface albedo (modeled). Clear and cloudy
regions within a pixel do not need to be distinguished, which is
appropriate to the relatively large (i.e., 10 km at nadir) EPIC
pixels. This approach was shown to be valid by Dedieu et al.
(1987) and Frouin and Chertock (1992).

Based on the previous work, the PAR model assumes that the
effects of clouds and other atmospheric constituents are
decoupled. The planetary atmosphere is therefore modeled as
a clear sky layer that contains molecules and aerosols positioned
above a cloud/surface layer, and surface PAR is expressed as the
product of a clear-sky component and a transmittance that
accounts for cloudiness and surface optical effects. Under solar
incidence (zenith angle) θs, the incoming spectral solar flux at the
top of the atmosphere, ETOAcos(θs), is reduced by a factor
Ta(θs)Tg(θs)[1 − SaA(θs)]−1 by the time it enters the cloud/
surface system, where Ta is the clear-sky transmittance (due to
scattering by molecules and aerosols), Tg is the gaseous
transmittance (essentially due to absorption by ozone), Sa is
the spherical albedo of the clear atmosphere, and A is the
cloud/surface system albedo. As the transmitted flux,
ETOAcos(θs)Ta(θs)Tg(θs)[1 − SaA(θs)]−1, passes through the
cloud/surface system, it is further reduced by a factor 1—A.
The instantaneous planar flux reaching the ocean surface at any
wavelength in the PAR spectral range, E, is then given by:

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 3 | Article 8333403

Frouin et al. EPIC/DSCOVR Ocean PAR Product

https://avdc.gsfc.nasa.gov/pub/DSCOVR/Web_EPIC/
https://avdc.gsfc.nasa.gov/pub/DSCOVR/Web_EPIC/
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


E(θs) � E0(θs)[1 − A(θs)][1 − As(θs)]−1[1 − SaA(θs)]−1, (1)
where As is the albedo of the ocean (surface and water body) and
E0(θs) � ETOAcos(θs)Ta(θs)Tg(θs) is the solar flux that would
reach the surface if the cloud layer and the surface were non-
reflecting. In clear sky conditions, A reduces to As and E to
Eclear � E0(1 − SaAs)−1. The term [1 − SaA(θs)]−1 in Eq. 1
represents interactions between the cloud/surface layer and the
clear atmosphere.

To compute E, A is expressed as a function of the radiance
measured by EPIC in bands centered on 443, 551, and 680 nm,
and this for each observation collected during the day
(i.e., between sunrise and sunset). These bands do not saturate
over clouds, and they sample sufficiently the PAR spectral range.
In this range, the scattering properties of molecules and aerosols
vary smoothly with wavelength, gaseous absorption is relatively
weak, and A is quite constant spectrally. The algorithm works on
a pixel-by-pixel basis, i.e., a daily mean PAR estimate is obtained
for each pixel of the satellite imagery. The various processing
steps and procedures are detailed in the following.

First the bidirectional reflectance of the cloud/surface layer,
ρ, is determined from the instantaneous EPIC Level 1b
reflectance data at source resolution. This is only
accomplished for pixels that are not contaminated by sea ice
or Sun glint. For sea ice masking, fractional ice coverage at
25 km resolution from the National Snow and Ice Data Center
(NSIDC) is used. If the fractional coverage is greater than 0.1,
then the pixel is discarded. For Sun glint masking, the Fresnel
signal at the wavy interface surface is calculated from the wind
speed according to Cox and Munk (1954), and all pixels with a
glint reflectance above 0.05 at 780 nm are eliminated. National
Centers for Environmental Prediction (NCEP) Reanalysis-2
wind data at 1o and 6-h resolution is used after interpolation
to the EPIC observation time. Both ancillary data sets are
remapped to the source grid prior to masking. Since in the
modeling the clear atmosphere is located above the cloud/
surface layer, ρ is obtained from the top-of-atmosphere
(TOA) reflectance, ρTOA by inverting the following equation
(Tanré et al., 1979):

ρTOA(θs, θv, ϕ) � Tg(θs, θv)[ρa(θs, θv, ϕ)
+ ρTa(θs, θv)(1 − Saρ)−1], (2)

where ρa is atmospheric reflectance and θv and ϕ are view zenith
and relative azimuth angles, respectively. In Eq. 2 Tg and Ta are
transmittances along the Sun-to-surface and surface-to-sensor
path. This expression is strictly valid for an isotropic target of
reflectance ρ, which is not the case for the cloud/surface layer,
but a good approximation for many geometries, except when
θs is large and clouds are optically thin, i.e., when the albedo
of that layer, A, is relatively close to ρ (Zege, et al., 1991). At
large θs, however, E becomes small since modulated directly
by cos(θs), and when clouds are thin their impact on (1 − A)
in Eq. 1 is also small, which tends to minimize effects on daily
mean surface fluxes. A better treatment would be to use the
following equation (Tanré et al., 1979; Deschamps et al.,
1983):

ρTOA(θs, θv, ϕ) � Tg(θs, θv){ρa + [ρ(θs, θv, ϕ) − A(θs)]e−τam
+ A(θs)Ta(θs, θv)[1 − SaA(θs)]−1} , (3)

where τa is the optical thickness of the clear atmosphere andm is
airmass, i.e., m � 1/cos(θs) + 1/cos(θv). Eq. 3 reduces to Eq. 2
when ρ is isotropic. The retrieval of ρ would be accomplished
through iteration. This would require a first estimate of A, which
can be obtained as described below for isotropic ρ.

To compute the atmospheric functions Tg, Ta, and ρa, the
surface pressure and water vapor amount are extracted from
NCEP Reanalysis 2 data, aerosol optical thickness at 550 nm,
Angström coefficient, and single scattering albedo at 550 nm
from MERRA-2 data at 0.625o × 0.5o (Gelaro et al., 2017), and
ozone amount from EPIC Level 2 data at source resolution
(Herman et al., 2018). Single scattering albedo is assumed
constant over the PAR spectral range. For ρa, the quasi-single
scattering approximation (Q-SSA) used in Frouin et al. (2003),
which gives too high values at large zenith angles, is replaced by a
parameterization that combines Q-SSA and exact single-
scattering approximation (SSA):

ρa � fSSA(m, τaer)ρa(SSA) + fQ-SSA(m, τaer)ρa(Q−SSA), (4)

where fSSA and fQ−SSA depend on m and aerosol optical
thickness, τaer, but are independent of the aerosol model.
These functions were obtained from the simulations with
the 6S code (Kotchenova et al., 2006, 2007) for atmospheres
containing various mixtures of maritime and continental
aerosols and angular geometries. Figure 1 displays ρa at
443, 551, and 680 nm as a function of θv for θs = 70o.
Scattering angle, quasi constant with EPIC, is fixed at
171.5o. The aerosols are of maritime type and τaer at
550 nm is 0.2 and 0.4 (top and bottom panels, respectively).
The parameterization works well yielding ρa values very close
to the 6S values except in the blue, where τaer is large (0.4) and
the molecular scattering is effective. At 443 nm the coupling
between aerosol and molecule scattering is relatively
important and the 6S ρa is substantially smaller than
ρa(Q–SSA), even at θv < 65o, which is partly explained by
the fact that in Q-SSA the molecule and aerosol contributions
to atmospheric reflectance correspond to the atmosphere
containing only molecules or aerosols, i.e., the neglected
aerosol-coupling term is negative (Deschamps et al., 1983).
The 6S and SSA values are quite similar at that wavelength, a
consequence of the SSA formulation that also assumes either
molecules or aerosols, i.e., the probability of encountering one
type of scatterer is enhanced (SSA values are expected to be
lower in the presence of both molecules and aerosols). As
wavelength increases, this effect is less prominent because the
atmosphere is less thick optically contributing to larger
differences between 6S and SSA values.

Once the reflectance of the cloud/surface layer, ρ, is
determined, it is converted into albedo A. This is
accomplished for each observation during daytime and the
three spectral bands by applying a cloud bidirectional
correction factor F (independent of wavelength) to ρ − As

since A ≈NAc + As where Ac is cloud albedo and N is
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fractional cloud cover (see Frouin and Chertock, 1992; Frouin
et al., 2003), i.e.,

A � F(ρ − As) + As, (5)
Analytical formulas developed by Zege et al. (1991) for

optically thick scattering layers in the non-absorbing medium
are used for F. The parameterization depends on the
asymmetry coefficient of the cloud indicatrix, g, and the
cloud optical thickness, τc, which are fixed at 0.853 and 15,
respectively. Sensitivity of F on g and τc is an issue, especially
when τc is relatively small (ρ exhibits more directionality), but
since E depends on (1 –A) the relative impact on E computed
from Eq. 1 is reduced in such situations (A is also small). The g
and τc variables can be viewed as tuning parameters, e.g., to
reduce biases in estimated fluxes. The surface albedo As is
parameterized as a function of the Sun zenith angle, aerosol
optical thickness at 500 nm, and wind speed following Jin et al.
(2004). In the As calculation, the chlorophyll-a concentration
is fixed at 0.1 mgm−3, and the wind speed is from NCEP
Reanalysis-2 data.

Next, the daily mean PAR, <EPAR > , is computed by
integrating over the PAR spectral range, i.e., 400 to 700 nm,
and the length of the day:

<EPAR > � ( 1
24
)∫

t
[cos(θs(t))G(t)]dt

withG � ∫
λ
[ETOATg Ta (1 –A)(1 − As)−1(1 − SaA)−1]dλ,

(6)

where ETOA is the extraterrestrial spectral solar flux per unit of
wavelength corrected for Earth-Sun distance variation during the
year and time t is expressed in hour. The integral is calculated for
each EPIC observation during the day. In other words, if after
masking a surface target (pixel) is observed n times during the
day, the algorithm generates n daily mean PAR values. The
dependence of A and As on θs is accounted for in the time
integration, but assuming that the characteristics of the
atmosphere and surface are unchanged during the day. This is
a crude assumption, especially for cloudiness, but diurnal
variability of the atmosphere is considered implicitly in the
final step of the algorithm (see below).

In the final step, the individual daily mean estimates obtained
on the source grid (number varies from 1 to 13 depending on
geographical location, the time during the year, and data
availability) are first remapped to an 18.4 km equal-area grid
and weight-averaged using the cosine of the Sun zenith angle and
then remapped to a Plate Carrée (equal-angle) grid with 18.4 km
resolution at the equator. The remapping algorithm is exactly the
one used by NASA OBPG to generate a Level 3 binned ocean
color products (https://oceancolor.gsfc.bnasa/gov/docs/format/
l3bins). Triangular-based linear interpolation is used to fill
missing pixels at the edges.

The weighting procedure to obtain the final <EPAR >
estimates is accurate, except when only one or two EPIC
observations per day is available. Such situations are
infrequent; they are due to instrument problems and mission
activities (e.g., sensor calibration, spacecraft maneuvers). The
accuracy of the weighting procedure was checked from
radiative transfer calculations with hourly MERRA-2 data for

FIGURE 1 | Atmospheric reflectance ρa parameterization using SSA, Q-SSA, and a combination of SSA and Q-SSA (green, blue, and black dots, respectively). 6S
calculations (RT) are displayed as red curves. Sun zenith angle is 70 deg., scattering angle is 171.5 deg., aerosols are of maritime type with optical thickness of 0.2 and
0.4 at 550 nm, and wavelengths are 388, 551, and 680 nm.
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cloud and aerosol properties and ozone and water vapor contents.
In the calculations, EPAR was expressed as
EPAR � EclearPAR(1 −NAc), where Ac is obtained from τc
according to Fitzpatrick et al. (2004) and EclearPAR is
simulated with the 6S code assuming a chlorophyll-a
concentration of 0.5 mgm−3 and a wind speed of 5 ms−1. Two
dates, i.e., January 1 and July 1, 2018, and ocean locations evenly
distributed in the spatial domain within 60°S to 40°N and 180°W
to 180°E, i.e., every 5° along latitude, and every 6.25° along
longitude, were selected. Table 1 displays the comparison
statistics of cos(θs)-weighed <EPAR > obtained from 1, 2, 3,
6, 9, and 12 individual <EPAR > estimates during the day versus
the <EPAR > value obtained by trapezoidal integration of all the
hourly EPAR values at the time of the MERRA-2 observations
(referred to as actual or theoretical<EPAR > ). The individual
estimates correspond to hourly observations randomly
distributed between sunrise and sunset. In estimating
<EPAR > for each observation, the aerosol and cloud
properties and gaseous absorber amounts are assumed
unchanged during the day, but the dependence of Ac and As

on θs are accounted for in the time integration, as in the EPIC
daily mean PAR algorithm. The cos(θs)-weighted <EPAR >
values agree well with the theoretical ones when 3 and more
observations per day are used, with biases less than 0.10 (0.4%)
Em−2d−1 in magnitude and root-mean-square difference (RMSD)
less than 3.83 (14.2%) Em−2d−1. RMSD is reduced to 1.34 (4.5%)
and 1.07 (3%) Em−2d−1 with 9 and 12 observations per day. The
biases are small because of the random sampling of times during
the day and the large number of locations considered in the data
ensemble. RMSD is noticeably larger when 1 or 2 <EPAR >
estimates are used, i.e., 7.00 (25.9%) and 4.86 (18.0%) Em−2d−1,
respectively. In such situations, the alternative procedure to
obtain<EPAR > , i.e., trapezoidal integration of hourly EPAR

values, would also give inaccurate results.
A way to reduce the sampling biases in such situations, not yet

implemented in the algorithm, is to use MERRA-2 hourly cloud
products for the very day of the EPIC observations, as proposed
by Tan et al. (2020). If τcMERRA andNMERRA denote the MERRA-
2 cloud optical thickness and fractional coverage, A is replaced by
A’ in Eq. 5 as follows:

A′ � (A − As)[NMERRA(t)Ac(τcMERRA(t))]/
× [NMERRA(ti)Ac(τcMERRA(ti))] + As, (7)

where ti is the time of satellite observation and Ac is computed
from τcMERRA at time t and ti. Basically, the quantity A − As is
adjusted by the ratio ofNAc computed fromMERRA-2 products
at times t and ti In Eq. 6 A, determined at ti, is corrected for
variations with θs, but assuming that cloud properties are
unchanged. Figure 2 illustrates the potential improvement
expected using Eq. 6. It displays scatter plots of OBPG
MODIS-A <EPAR > estimates at source resolution (about
1 km) versus in situ measurements at the Chesapeake Bay
CERES Ocean Validation Experiment (COVE) site (36.9oN,
75.7oW) in the Western Atlantic during 2003–2014 (see Tan
et al., 2020, for details about the in situ data collected at that site).
Bias is reduced from 1.72 (5.3%) to −0.05 (-0.1%) Em−2d−1,
i.e., practically eliminated on average, but RMSD is marginally
improved, i.e., 7.02 (21.4%) instead of 7.37 (22.5%) Em−2d−1,
when using the hourly MERRA-2 cloud products.

3 UNCERTAINTY ASSIGNMENT

Associating uncertainty to each <EPAR > estimate is necessary to
use properly the information provided by the estimate. It allows
one to verify that variability and trends are actual to merge
different datasets optimally, and to constrain adequately model
predictions (Frouin et al., 2018a; IOCCG, 2019). Comparisons
with contemporaneous and collocated in situ measurements at a
few sites, the current approach to quantify experimental
performance may not be sufficient to describe uncertainty in
the wide range of conditions expected to be encountered.
Representing uncertainty on a pixel-by-pixel basis requires
modeling the measurement, identifying all possible error
sources (e.g., noise in the input variables, imperfect or
incomplete mathematical model), and determining the
combined uncertainty (JGCM-100, 2008; Povey and Grainger,
2015; IOCCG, 2019). Algorithm uncertainty is due to model
approximations and parameter errors (e.g., using plane-parallel
atmosphere, decoupling effects of clouds and clear atmosphere,
neglecting diurnal variability of clouds, fixing cloud optical
thickness to a constant in bidirectional correction) if the input
variables (EPIC TOA reflectance at wavelengths in the PAR
spectral range) are known perfectly. A complete pixel-by-pixel
uncertainty budget should include, not only algorithm
uncertainty, but also uncertainty due to measurement noise,

TABLE 1 | Statistics of comparing cos(θs)-weighted < EPAR > with actual (theoretical) <EPAR > using different number of observations at randomly distributed hourly times
during the day on January 1 and July 1, 2018, at ocean locations within 60°S to 40°N and 180°W to 180°E. The number of data points (N) is slightly different when six and
more hourly observations per day are used, because such number of observations may not be available for some locations during some days of the year.

No. of observations R2 Bias (Em−2d−1) RMSD (Em−2d−1) N

1 0.859 −0.07 (−0.3%) 7.00 (25.9%) 1,874
2 0.929 0.04 (0.1%) 4.86 (18.0%) 1,874
3 0.955 −0.10 (−0.4%) 3.83 (14.2%) 1,874
6 0.987 0.06 (0.2%) 2.04 (7.4%) 1,851
9 0.993 −0.02 (−0.1%) 1.34 (4.5%) 1,682
12 0.996 −0.06 (−0.2%) 1.07 (3.0%) 1,095
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radiometric calibration, and preprocessing to Level 1b, a
component that is difficult to determine accurately.

The procedure described in Frouin et al. (2018a, b) is used to
estimate and provide, for each pixel of the daily mean PAR
product, the algorithm uncertainty component of the total
uncertainty budget, which is expected to dominate. The bias
and standard deviation portions are calculated as a function of
clear sky daily mean PAR, <EclearPAR > , and cloud factor,
<CFPAR > � <EPAR > /<EclearPAR > (characterizes the effect
of clouds on PAR and varies from 0 to 1), by simulating for many
situations the satellite measurements and corresponding
<EPAR > and comparing the latter to the <EPAR > estimated
from the TOA reflectance. The simulations were performed with
the Atmospheric Radiative Transfer Database for Earth and
Climate Observation (ARTDECO) code (Dubuisson et al.,
2016; https://www.icare.univ-lille.fr/artdeco/) using as input

several years (2003 to 2012) of MERRA-2 hourly data (aerosol
and cloud properties). The large number of data points allows one
to sample a wide range of geometric configurations for the
satellite data and atmospheric variability, in particular many
situations of daytime nebulosity for all latitudes. At this stage,
the resulting look-up-tables (LUTs) only depend on
<EclearPAR > and <CFPAR > , but other parameters, e.g.,
angular geometry and latitude, will be considered in the
future. Since the final <EPAR > is a cos(θs)-weighted average
of individual <EPAR > estimates during the day, the uncertainty
on the final <EPAR > is obtained by weighting the individual
uncertainties in the same way.

Figure 3 displays the resulting uncertainty (bias and standard
deviation) on individual <EPAR> estimates as a function of
<CFPAR > for several <EclearPAR > levels, i.e., 12, 35, and
58 Em−2d−1. The bias between estimated and simulated

FIGURE 2 |MODIS-A <EPAR> estimate vs. in situ data collected at the COVE site in theWestern Atlantic. Left: No correction for cloud diurnal variability. Right: Using
MERRA-2 hourly cloud products.

FIGURE 3 | Algorithm uncertainity on individual <EPAR> estimates (i.e., using one observation per day) as a function of <CFPAR > for several values of< EclearPAR > .
(A) Bias (estimated minus simulated values); (B) standard deviation. The theoritical uncertainity was obtained from simulations of the TOA reflectance and <EPAR>for a
wide range of situations using 10 years of MERRA-2 aerosol and cloud data (see text for details).
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<EPAR > values (Figure 3A) is small (mostly within 1 Em−2d−1

in magnitude) and does not vary much with <CFPAR > at low
and moderate <EclearPAR > values (blue and red curves) but
reaches 3 Em−2d−1 at high <EclearPAR > values when <CFPAR >
is small (black curve). The standard deviation (Figure 3B) is
peaked toward intermediate cloud factors (the risk or probability
that cloudiness at the time of satellite measurement may not be
representative of the conditions at other times during the day is
larger), increasing from about 2.2 to 8.7 Em−2d−1 when
<EclearPAR > increases from 12 to 58 Em−2d−1 and
<CFPAR > = 0.5, i.e., about 15% relatively.

As mentioned above, a complete per-pixel uncertainty budget
must include errors in the Level 1b data, which may require
estimating the sensitivity of <EPAR > to input reflectance and
the covariance in the various spectral bands (JGCM-100, 2008).
Noise in the input data is difficult to estimate, especially spectral
correlations, but this can be attempted by analyzing the Level 1b
imagery using structure functions or variograms (e.g., Curran and
Dungan, 1989; Wald, 1989) and considering information gleaned
from inflight calibration studies. The approach, therefore, would
be to establish the uncertainty LUTs using noisy TOA reflectance
simulations. Note, however, that in the case of MERIS
comparisons with match-up data at the COVE site have
revealed that experimental uncertainties are similar to
algorithm uncertainties obtained from modeled data without
noise (Frouin et al., 2018b). Similar results are expected for
EPIC <EPAR > uncertainties.

4 EVALUATION AGAINST IN SITU
MEASUREMENTS

4.1 Datasets
The EPIC <EPAR> product has been evaluated against in situ
measurements at three mid-latitude oceanic sites (Figure 4),
where long-term E measurements are routinely acquired from
moored buoys i.e., BOUée pour l’acquiSition d’une Série Optique
à Long termE (BOUSSOLE) and California Current Ecosystem
(CCE) buoys 1 and 2 (hereafter denoted CCE-1 and CCE-2).
Table 2 lists the main characteristics of the data sets. Although
situations for which Sun zenith angles stay large during the day
(such as in polar regions) were not sampled, the atmospheric
conditions at the three sites exhibited large variability in cloud
and aerosol properties making the datasets appropriate for
statistically quantifying uncertainties in the <EPAR > estimates.

The BOUSSOLE above-surface downward solar irradiance
dataset (http://www.obs-vlfr.fr/Boussole/html/project/boussole.
php; Antoine et al., 2008) consists of high frequency EPAR

measurements (every 15 min) collected from the long-term
mooring located at 43.37°N and 7.90°E in the Western
Mediterranean Sea about 60 km off the coast (between Nice
and Corsica, France). The EPAR measurements were made by
Satlantic cosine radiometers installed on top of the immerged part
of the buoy during May 29, 2015-July 28, 2019
(i.e., corresponding to the EPIC operational phase). Four
deployments were made during this period, but there was a
large data gap between December 11, 2017 and February 16,
2019. Before conversion into geophysical quantities, the raw data
were calibrated using coefficients provided by the manufacturer
and checked for outliers. The EPAR measurements were corrected
for tilt effects according to Antoine et al. (2008). To obtain daily
mean values, i.e., <EPAR > , instantaneous EPAR with tilt angles
less than 20o was integrated over time from sunrise to sunset.

The CCE-1 and -2 datasets were collected at two surface
moorings in the California Current (http://mooring.ucsd.edu/
cce/). Multiple deployments are available and for this study we
used the CCE-1 deployments from October 23, 2017 to June 9,
2020, and the CCE-2 deployments from August 15, 2017 to May
7, 2019. CCE-1 is located at 33.46°N, 122.53°W in the core of
California Current, approximately 220 km off Point Conception,
California. The CCE-2 mooring is operated at 34.31°N and 120.
80°W and closer to the shore, approximately 35 km off Point
Conception. For both mooring locations, the E measurements
were made every 30 min at 412 nm, 443 nm, 490 nm, 510 nm,
555 nm, 620 nm, and 669 nm by Sea-Bird OCR-507 sensors. The
raw data were calibrated to actual E using radiative transfer (RT)
simulations. First, clear sky days were identified by carefully
examining the shape of raw data as a function of time each
day. Only those following strictly the cosine function EPAR �
acos(θs)e−β/cos(θs) with limited error (Tan et al., 2020, Section 4.
1) were selected. Second, the theoretical E for these clear days
were simulated using the 6S code with aerosol properties, water
vapor, and ozone, wind speed, and chlorophyll-a concentration
from NASA OBPG MODerate resolution Imaging
Spectroradiometer (MODIS) and Visible Infrared Imaging
Radiometer Suite (VIIRS) Level 2 products. Only days with
τaer less than 0.1 at 550 nm were retained and θs was limited
to 60o. For those τaer and θs conditions the aerosol transmittance,
about 1 − 0.16τaer/cos(θs) according to Tanré et al. (1979), is
above 0.97, i.e., aerosols affect minimally E. Third, linear relations

TABLE 2 | I Characteristics of the in situ above surface downward solar irradiance datasets used in the evaluation of the EPIC <EPAR > estimates.

Sites Geographic
location

Platform
type

Sensor type Time period Measurement
frequency (min)

BOUSSOLE 43.3667°N, 7.9°E Moored buoy PAR (400-700 nm) 5/29/2015–7/28/
2019

15

CCE-1 33.462°N,
122.526°W

Moored buoy Multispectral (412 nm, 443 nm, 490 nm, 510 nm, 555 nm,
620 nm, 669 nm)

10/18/2018–6/9/
2020

30

CCE-2 34.309°N,
120.804°W

Moored buoy Multispectral (412 nm, 443 nm, 490 nm, 510 nm, 555 nm,
620 nm, 669 nm)

8/15/2017–9/8/
2020

30
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y � ax were determined by comparing the simulated E and raw
data yielding the calibration coefficients to be applied to the raw
counts. This was done for each deployment since instruments
were switched for different deployments and it is expected that the
calibration coefficients are different. The raw data corresponding
to tilt larger than 10o were not used in this process and dark
subtraction was performed before running the linear regression.

Figure 5 displays calibration results at wavelengths 443, 555, and
669 nm for selected deployments. Uncertainty of the calibration
gain a (expressed in 10–6/Count) associated with the least-squares
fit varies from ± 0.25% to ±0.68% depending on wavelength.
Finally, the calibrated spectral E data were first integrated over
wavelength and then over time during the day to
generate<EPAR > .

FIGURE 4 | Location of the three in situ sites (BOUSSOLE in the Western Mediterranean Sea and CCE-1 and -2 in the Northeast Pacific Ocean) used to evaluate
EPIC <EPAR> estimates.

FIGURE 5 | Examples of derived calibration coefficients for CCE-1 (deployment #13) and CCE-2 (deployment #9) datasets at 443, 559, and 669 nm. Raw counts
are compared with E simulation in conditions of clear sky with small aerosol optical thickness (see text for details).
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4.2 Calibration and Adjustment
The calibrated datasets need to be checked and eventual biases
removed before evaluating the EPIC <EPAR > estimates. This is
important because laboratory calibration errors and other errors
(e.g., due to exposure to the marine environment and data
processing) may significantly affect the quality of the in situ
measurement. An independent check-of-calibration can be
performed, as indicated above, by comparing the calibrated
measurements to RT simulations in clear sky conditions that
allow accurate computations of the atmospheric transmittance.
Since the CCE-1 and -2 datasets were already calibrated using
such RT simulations, as described in the previous sub-section, no
further bias adjustment is necessary for those datasets.

The BOUSSOLE dataset, however, was checked against 6S
simulations. The same procedure as described for CCE-1 and -2
datasets, including the selection of clear sky days with small
aerosol content and θs less than 60o, was used. Only five suitable
clear sky days were identified during deployments #3 (June 29,
2016—May 24, 2017) and #5 (February 16, 2019—July 28, 2019);
the processing, therefore, was limited to those deployments.
Corrections were then applied to the in situ data based on the
best linear fits (y � ax) obtained by regressing, for each
deployment separately, instantaneous E simulations against
corresponding in situ measurements.

Figure 6 displays scatter plots of 6S-simulated versus
measured E for the two BOUSSOLE deployments before and
after correction. The overall bias before correction (Figure 6, left)
decreased from 0.55 Em−2 d−1 (0.4%) to -0.14 Em−2 d−1 (−0.1%)
after correction (Figure 6, right) and RMSD from 2.07 Em−2 d−1

(1.6%) to 1.69 Em−2 d−1 (1.3%). The small bias and RMSD in the
BOUSSOLE data before correction indicate that the BOUSSOLE
data are well-calibrated for those deployments and suggests that
one may use with confidence the data from other deployments,
even without adjustment. Examination of those deployments,
however, revealed abnormal E values. Therefore, only data from
deployments 3 and 5 were used, and for consistency with the

CCE-1 and -2 datasets the small bias adjustment was still applied
to the data.

4.3 Match-Up Comparison
EPIC <EPAR > estimates remapped at 18.4 km spatial resolution
(equal-area grid) were matched with in situ measurements at the
three evaluation sites. The EPIC pixel with center closest to the
site was selected. One may wonder whether, due to the size of the
EPIC <EPAR > pixel, satellite estimates are mismatched with the
local in situ measurements. Comparisons of MODIS-Aqua and
-Terra <EPAR > estimates at 4.6, 9.2, and 18.4 km resolution
during June 13, 2015 (beginning of the EPIC dataset), to June 23,
2021, indicated practically no biases at the BOUSSOLE and CCE-
1 sites and a slight overestimation by about 0.5–0.7% at 18.4 km
resolution with respect to 9.2 and 4.6 km resolution, respectively,
at the CCE-2 site. RMSD was 3.9–4.7% between estimates at 9.2
and 18.4 km resolution depending on site and sensor, increasing
to 5.6–6.8% between estimates at 4.6 and 18.4 km resolution. In
other words, the relatively large spatial resolution of the EPIC
pixels is expected to minimally affect statistical performance in
terms of bias at the three sites, but RMSD might be significantly
underestimated.

Figure 7 displays for each site scatter plots of EPIC, MODIS-
Aqua, and MODIS-Terra PAR estimates versus in situ
measurements. In the comparisons, MODIS values at 9.2 km
resolution were averaged to the 18.4 km resolution. The satellite
estimates agree with the measurements, but statistical
performance is better using EPIC, with bias and RMSD of
0.12 Em−2d−1 (0.4%) and 3.93 Em−2d−1 (12.0%) for
BOUSSOLE, -0.5 Em−2d−1 (−1.5%) and 3.4 Em−2d−1 (10.2%)
for CCE-1, and 0.8 Em−2d−1 (2.2%) and 4.6 Em−2d−1 (13.3%)
for CCE-2. The MODIS-Aqua and -Terra estimates are more
biased and exhibit more scatter, reflecting the points made above
about using one instead of multiple observations during the day.
In particular, the positive bias obtained with MODIS data is likely
due to a higher probability of having clear skies at the time of

FIGURE 6 | Comparison between 6S-modeled and field-measured instantaneous <EPAR> in very clear sky conditions at the BOUSSOLE site using hourly data:
(Left) before any correction; (Right) after adjustment of the measured values to the 6S value via linear regression.
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satellite overpass, i.e., late morning or early afternoon, yielding
higher than actual daily mean values. Such overestimation was
documented in many studies (Section 1) and recently reported by
Tan et al. (2020), who compared Medium Resolution Imaging
Spectrometer (MERIS) <EPAR > estimates against in situ
measurements when the satellite observation was made under
clear skies. In many instances, theMERIS-derived values were too
high, resulting in an overall positive bias, which was explained by
the presence of clouds at other times during the day.

Algorithm uncertainty was calculated for each <EPAR >
estimate of the match-up data set, as described in Section 3,

but is not displayed in Figure 7. The resulting average bias and
RMSD uncertainty (includes bias and standard deviation
components) are respectively 0.49 and 3.63 Em−2d−1 at
BOUSSOLE, 0.70 and 4.73 Em−2d−1 at CCE-1, and 0.77 and
4.28 Em−2d−1 at CCE-2. These values resemble those obtained
experimentally, i.e., 0.12 and 3.93 Em−2d−1 at BOUSSOLE,
−0.49 and 3.38 Em−2d−1 at CCE-1, and 0.57 and
4.77 Em−2d−1 at CCE-2, see Figure 7, suggesting that the
procedure to associate uncertainty is adequate and that it
might not be necessary to include EPIC imagery noise in
the theoretical uncertainty budget.

FIGURE 7 | Comparison of EPIC, MODIS-T, <EPAR> estimates against in situ data collected at the three evaluation sites (BOUSSOLE, CCE-1, and CCE-2). Left
columns are for EPIC, middle columns for MODIS-A, and right columns for MODIS-T.
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5 APPLICATION TO SATELLITE IMAGERY

Figures 8A–C displays an example of an EPIC <EPAR > product
with associated uncertainties. The date is March 20, 2018
(equinox); the land is in black and the sea ice is in white. The
values range from a few Em−2d−1 at high latitudes to about 58 E
m−2d−1 at equatorial and tropical latitudes with atmospheric
disturbances modulating the <EPAR > field, especially at
middle latitudes (Figure 8A). The bias uncertainty tends to be
positive when <EPAR > values are high (overestimation by up to
2 Em−2d−1) and slightly negative when <EPAR > values are low
(underestimation by up to 1 Em−2d−1). The overestimation is
relatively larger when <EclearPAR > is high and cloud factor is
low, which occurs at low and middle latitudes (Figure 8B). The
standard deviation uncertainty is more variable spatially, ranging
from 2 to 8 Em−2d−1, with highest values obtained at moderate
cloud factors and high <EclearPAR > values, as expected from
Figure 3, for example off the coast of Chile and Peru at about 25oS
and 80oW where cloud factor is about 0.5 (Figure 8C).

Compared with the MODIS-Aqua <EPAR > product
(Figure 8D), the EPIC product (Figure 8A) is less noisy due
to multiple observations during the day and does not have any
spatial gaps at low/middle latitudes (gray color). The difference
map between the two products (Figure 9A) shows good
agreement, with higher differences generally encountered in
middle to high latitude regions affected by storm activity. The
MODIS-Aqua values cover a slightly larger range, which is
expected because more extreme values are likely to be
encountered with only one observation per day (Figure 9B).
The frequency of values between 15 and 30 Em−2d−1 is higher for
EPIC reflecting the lower probability of having very low values

when several observations during the day are used in estimating
<EPAR > in cloudy conditions. The difference histogram
indicates that the EPIC <EPAR > values are slightly lower
than the MODIS-Aqua values, by 0.7 Em−2d−1 on average
(Figure 9C). This may result from MODIS-Aqua observing at
about 1:30:pm local time, i.e., when cloudiness is usually reduced
(e.g., Bergman and Salby, 1996).

The EPIC <EPAR > imagery of March 20, 2018, was also
compared with corresponding imagery from AHI onboard
Hiwamari-8 (operated by the Japanese Meteorological Agency)
over the oceans and seas surrounding East and Southeast Asia
and Australia (Figure 10). The AHI <EPAR > product, available
at 5 km resolution on the equal latitude-longitude grid from the
Japanese Aerospace Exploration Agency (JAXA) was generated
from geostationary observations acquired every 10 min using an
adapted version of the algorithm described in Frouin and
Murakami (2007). It was remapped to the equal-angle grid
(18.4 km at the equator) for comparison to the EPIC
<EPAR > product. The spatial features are very similar in
both products (Figure 10A,B), and differences do not exhibit
a distinct pattern, although there is some evidence that larger
differences often occur near the edges of low-pressure systems
(Figure 10C). This may be due to the different temporal
resolution of the two products with AHI capturing more
accurately the daily variability of moving disturbances. The
range of <EPAR > values is practically the same for EPIC and
AHI, but the AHI histogram exhibits a small number of higher
values between 5 and 25 Em−2d−1 and lower values above
55 Em−2d−1 (Figure 10D). Again, this is plausibly attributed to
using more observations during the day in the AHI <EPAR >
estimation. The <EPAR > differences are generally small

FIGURE 8 | (A) <EPAR> derived from EPIC imagery of March 20, 2018; (B,C) Algorithm uncertainity (bias, standard deviation) associated to EPIC <EPAR> estimates;
(D) <EPAR> derived from MODIS-Aqua imagery of March 20, 2018.
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(i.e., mostly between -5 and 5 Em−2d−1) but may be as large in
magnitude as 20 Em−2d−1, resulting in an overall bias (higher
EPIC values) of 1.34 Em−2d−1 or 3.6% (Figure 10E). Of course,
this bias is only valid for the date and area considered in the
comparison—it is expected to differ depending on region and
period, yet it corresponds to a wide range of atmospheric
conditions.

Figure 11 displays the time series of EPIC and MODIS daily
and monthly mean EPAR during the entire DSCOVRmission until
August 2021 at 50oN and 30oW (North Atlantic) and 0o and 30oW
(Equatorial Atlantic). The MODIS values are averages of MODIS-
Aqua and -Terra estimates. The seasonal cycle and day-to-day
variability are large at 50oN, while short-term variability dominates
at the Equator. SeasonalEPAR changes are depicted in the sameway
by EPIC and MODIS, but the MODIS values tend to be slightly
higher, as expected. These examples of time series, and the good
performance against in situmeasurements (Figure 7), illustrate the
potential of the EPIC <EPAR > product in ocean biogeochemistry
studies.

6 CONCLUSION

An algorithm was developed to estimate daily mean PAR at the
ice-free ocean surface, EPAR, from EPIC observations in spectral

bands centered on 443, 551, and 680 nm. The algorithm, based on
Frouin et al. (2003), uses a budget approach that does not require
distinguishing whether a pixel is clear or cloudy, which is
appropriate for the coarse EPIC pixels. Algorithm
uncertainties (bias and standard deviation) were associated to
each <EPAR > estimate using LUTs established from RT
simulations. A preliminary evaluation showed good agreement
with <EPAR > estimates from other satellite sensors (polar-
orbiting MODIS and geostationary AHI) and in situ
measurements at ocean moorings. Match-up data analysis
indicated that the EPIC-derived <EPAR > was less biased than
the MODIS <EPAR > , and the EPIC <EPAR > imagery was less
noisy, which was explained by using multiple observations during
the day with EPIC instead of only one observation with MODIS.
The uncertainty of the EPIC <EPAR > product, with biases of
−1.5 to 2.2% and RMSDs of 10.0–13.3% depending on the site is
lower than the uncertainty of other parameters coming into play
in primary production modeling (e.g., phytoplankton absorption
and quantum yield). The <EPAR > 2015–2021 time series at
selected oceanic locations demonstrated the algorithm ability to
capture monthly to interannual variability for investigating the
ocean response to temporal changes in available light over a wide
range of scales.

The EPIC <EPAR > product is generated routinely by the
NASA Center for Climate Simulation (NCCS) and distributed by

FIGURE 9 | (A)Map of the difference between EPIC and MODIS-A <EPAR> estimates for March, 20, 2018; (B) histogram of the EPIC and MODIS-A <EPAR> values;
(C) histogram of the EPIC difference between EPIC and MODIS-A <EPAR> estimates.
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the Langley ASDC. The data (with documentation) are archived
since the beginning of the DSCOVRmission, i.e., June 13, 2015, at
https://asdc.larc.nasa.gov/project/DSCOVR/ DSCOVR_EPIC_
L3_PAR_01. They are available on equidistant cylindrical Plate
Carrée grid with 18.4 km resolution at the equator and in 18.4 km
equal-area sinusoidal projection, i.e., on spatial grids that are
compatible with MODIS and VIIRS Level 3 NASA OBPG ocean-
color products.

The current algorithm can be improved in several ways, i.e., by
calculating atmospheric reflectance more accurately at large zenith
angles (LUTs may be used instead of approximate analytical
representation), by relaxing the Lambertian assumption in the
retrieval of the cloud/surface layer reflectance, by improving the
parameterization of cloud bidirectional effects, and by including from
reanalysis data information about cloud variability, which would
provide better accuracy when only a few EPIC observations are
available to estimate the daily means. Uncertainty may also be
specified as a function of angular geometry and latitude, even
region, instead of using an average estimate for all latitudes over
several years of MERRA-2 data, and they can be fitted by a
generalized additive model with proper auxiliary variables.

Other <EPAR > datasets exist (e.g., OBPG MODIS and VIIRS
products), but the EPIC time series is uniquely valuable for several
reasons. First, the daily mean PAR estimates, which exploit the multiple
EPIC observations from sunrise to sunset (i.e., consider diurnal cloud
variability), are more accurate than those from sensors in polar orbit

(i.e., typically use one observation per day). Second, coverage is global on a
daily time scale at low and middle latitudes, which is currently not
achieved with instruments onboard polar orbiters (due to Sun glint,
limited swath). Sensors operating from geostationary orbit have limited
coverage and reduced spatial resolution at high latitudes, a smaller
problem with EPIC. Third, and particularly important, comparisons
between daily <EPAR > estimates from EPIC and concurrent polar-
orbiting sensors (e.g., MODIS and VIIRS) would determine biases
associated with estimates from these sensors, allowing for a consistent
<EPAR > time series across sensors, not only during the overlap period,
but before and after, i.e., for a long-term (over several decades) science
quality <EPAR > record.

The EPIC <EPAR > product is useful to a wide range of
research applications, such as primary production and carbon export
modeling, ecosystem dynamics and mixed-layer physics,
photochemical transformations of dissolved organic matter, and
control of stable soluble iron in marine waters. It complements
existing <EPAR > datasets and, as mentioned above, may bring
about consistency across sensors, allowing a better description of
biological phenomena that could lead to new information about
temporal variability of biological processes.

The methodology can be easily extended to estimating ultraviolet
(UV) surface irradiance using the EPIC spectral bands centered on
317, 325, 340, and 388 nm, especially since ozone content, a key
variable governing atmospheric transmittance in the UV, is a
standard EPIC product. Furthermore, planar and scalar fluxes

FIGURE 10 | (A) <EPAR> derived from EPIC imagery of March, 20, 2018; (B) same as (A), but AHI imagery; (C)map of the difference between EPIC and AHI <EPAR>
estimates; (D) histogram of the EPIC and AHI <EPAR> values; (E) histogram of the difference between EPIC and AHI <EPAR> estimates.

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 3 | Article 83334014

Frouin et al. EPIC/DSCOVR Ocean PAR Product

https://asdc.larc.nasa.gov/project/DSCOVR/
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


below the surface, as well as average cosine for total light (a measure
of the angular structure of the light field), variables more directly
relevant to addressing science questions pertaining to
biogeochemical cycling of carbon, nutrients, and oxygen can also
be estimated without major difficulty from the above-surface
quantities. Approaches have been identified and procedures
devised (Frouin et al., 2018a); they are based on LUTs of clear
sky and overcast situations and the derived cloud factor, <CF>
(<CFPAR > for the PAR spectral range), from the EPIC
observations (Frouin et al., 2018a). Following Mobley and Boss
(2012), the LUTs may only depend on a reduced set of parameters,
the most important ones being the location and date, which control
the day length and mean Sun zenith angle, then the influence of the
clouds which is between null (clear sky) and maximum (100% cloud
cover), and finally the wind speed. In other words, the observed
<CF> may be used as a proxy for the actual cloud factor in linearly
interpolating between clear sky and overcast LUTs as a function of
<CF> . The prospects are promising for ocean biogeochemistry
applications.
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