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Ocean transparency, often measured using Secchi disk, is a useful index of water quality or productivity and is
used in many environmental studies. The spaceborne ocean color sensors provide synoptic and regular
radiometric data and can be used for applying environmental policies if the data is converted into relevant
biogeochemical properties. We adapted and developed semi-analytical and empirical algorithms to estimate
the Secchi depth from satellite ocean color data in both coastal and oceanic waters. The development of the
algorithms is based on the use of a comprehensive in situ bio-optical dataset. The algorithms are validated
using an extensive set of coincident satellite estimates and in situ measurements of the Secchi depth (so-
called matchups). More than 400 matchups are compiled for the MERIS, MODIS and SeaWiFS sensors. The
comparison between Secchi depth retrievals from remote sensing data and in situ measurements yields
determination coefficients (R2) between 0.50 and 0.73, depending on the sensor and algorithm. The type II
linear regression slopes and intercepts vary between 0.95 and 1.46, and between −0.8 and 6.2 m,
respectively. While semi-analytical algorithms provide the most promising results on in situ data, the
empirical one proves to be more robust on remote sensing data because it is less sensitive to error due to
erroneous atmospheric corrections. Using ocean color archives, one can derive maps of ocean transparency for
different areas. Our climatology of the Secchi depth based on ocean color for the transition zone between the
North Sea and Baltic Sea is compared to an historical dataset.
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1. Introduction

Ocean transparency, although being an apparently vague and
generic term, is relevant to many users of marine resources, as an
indicator of water quality. The Secchi disk depth (ZSD, in m, see Table 1
for a list of symbols) is a widely used indicator of ocean transparency.
This measurement originates from the nineteenth century (see
Preisendorfer, 1986; Tyler, 1968 and references therein) and has
been routinely made over decades in many areas of the world ocean.
Large Secchi depth historical databases therefore exist. The United
States National Oceanographic Data Center (US-NODC), for instance,
archives ~160000 observations in the WOD98 dataset (http://www.
nodc.noaa.gov/). Historical datasets were used to analyze the
temporal trends in the Secchi depth and to associate changes in the
transparency with biological components of the oceans or to compute
climatologies. Simonot and Le Treut(1986) used that dataset to infer
trends in the phytoplanktonic content of the oceans. Another study
focused on global patterns of ocean transparency in relation with the
new production of the open ocean (Lewis et al., 1988). Falkowski and
Wilson(1992) examined the multidecadal variations in the phyto-
plankton productivity in the North Pacific, estimated from Secchi
depth. The latter three studies used the historical measurements of
the NODC and took advantage of the link between the Secchi depth
and the phytoplanktonic content of the open ocean. Aarup(2002)
gathered several thousands of historical observations from the North
Sea and the Baltic Sea and derived a climatology for the Skagerrak and
Kattegat straits, which link the two seas.

The ocean color spaceborne sensors, thanks to their revisitation
capacity and swath width, provide a wealth of information on the
ocean and more specifically on substances and processes that interact
with, and are driven by light, respectively. Two currently flying
sensors, MODIS-Aqua (aboard the Aqua satellite) and MERIS (aboard
the Envisat satellite) were launched in 2002 respectively by the NASA
and ESA and are expected to provide operational information for some
additional years. The SeaWiFS sensor, launched by the NASA provides
ocean color data from 1997, which thus constitutes an archive of more
than a decade. Although the spatial coverage of ocean color sensors
varies with latitude and depends on the cloud coverage, remotely
sensed data makes it possible to retrieve not only global views of
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Table 1
List of symbols, units and subscripts.

Symbol Description Unit

a (λ) Absorption coefficient m−1

b (λ) Scattering coefficient m−1

bb (λ) Backscattering coefficient m−1

b̃bp λð Þ Backscattering efficiency for the particles Dimensionless
B490−560 Average ratio of the scattering coefficient

at 490 and 560 nm
Dimensionless

c (λ) Beam attenuation coefficient m−1

c (v) Photopic beam attenuation coefficient m−1

C0 Inherent contrast between the disk and
background water

Dimensionless

Cmin Minimum apparent contrast perceivable
by the human eye

Dimensionless

Ed (λ,z) Downward plane irradiance at the depth z Wm−2 nm−1

Eu (λ,z) Upward plane irradiance at the depth z Wm−2 nm−1

f (λ) Proportionality factor between R(λ), bb(λ)
and a(λ) with R λð Þ = f λð Þ bb λð Þ

a λð Þ

Dimensionless

Kd (λ) Vertical diffuse attenuation coefficient m−1

Kd (v) Photopic vertical diffuse attenuation coefficient m−1

Lu(λ,θ,φ,z) Upwelling radiance in the viewing direction Wm−2 sr−1 nm−1

Lw(λ,0+) Water-leaving radiance in the viewing direction Wm−2 sr−1 nm−1

n Refractive index of water
nLu(λ,θ,φ,z) Normalized water-leaving radiance in the

viewing direction
Wm−2 sr−1 nm−1

Q Bidirectionality factor Dimensionless
rrs (λ) In-water remote-sensing reflectance sr−1

r Mean (water–air) Fresnel reflectance for the
whole diffuse upward flux

Dimensionless

R(λ) Irradiance reflectance just below the surface Dimensionless
Rrs(λ) Above-surface remote-sensing reflectance sr−1

RSD Reflectance of the Secchi disk Dimensionless
R∞ Reflectance of the environment around the

Secchi disk
Dimensionless

W Wind speed m.s−1

ZSD Secchi disk depth m
α490−560 Proportionality factor between the residual

absorption at 490 and 560 nm
Dimensionless

γ Coupling constant Dimensionless
ρw Irradiance reflectance Dimensionless
ρ The (air–water) Fresnel reflectance at the

interface that applies to the whole downward
irradiance from the sun and the sky

Dimensionless

R0 Dimensionless
ρ(θ′,θ) Fresnel reflectance for the associated

directions θ and θ′
Dimensionless

τa Atmospheric thickness Dimensionless
θ Incident direction
θ′ Refracted direction
θs Zenith solar angle

Subscript
on IOPs

Signification

No subscript Total
p Particulate (in the meaning of suspended

particulate material)
w Water
^ Estimated variable, e.g. K̂d

Table 2
Summary of the in situ Secchi disk depths data obtained for various locations, with the
minimum depth, the maximum depth and the number of measurements.

Geographical zone Data
provider

Date Min–max
(number)

NW Mediterranean Sea (Elbe) EPSHOM 29/05/03–17/06/03 18–21(6)
NW Mediterranean Sea Dyfamed 20/01/02–17/10/06 7–29 (37)
NW Mediterranean Sea Boussole 25/03/05–07/09/06 7–25 (21)
Bay of Biscay EPSHOM 07/10/02–19/10/02 3–16 (45)

27/03/03–10/04/03 1.3–16.5 (75)
13/10/04–24/10/04 1–19 (55)

Skagerrak and Kattegat IMR 14/04/04–29/04/04 2–15 (82)
North Sea BSH 28/07/03-12/08/03 2.3-18(52)
North Sea BSH 05/08/04-18/08/04 2-15(46)
English Channel EPSHOM 01/09/04 0.05–5.5 (15)
South Pacific Biosope 21/10/04–09/12/04 10.5–70 (20)
Off California CALCOFI 02/07/02–26/01/08 1–41 (634)
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chlorophyll a concentration ([chl a], in mg m−3) and its seasonal
evolution (Earth observation era), but also decadal trends in [chl a]
(Antoine et al., 2005; Martinez et al., 2009).

At present, the algorithms proposed to estimate the ocean transpar-
ency from remotely sensed data are empirical. Using ocean color data,
Prasadet al.(1998)proposeda relationshipbetween theSecchidepthand
the ratio of two water-leaving radiances. This empirical algorithm was
calibrated with simultaneous in situ measurements of Secchi depths and
water-leaving radiances in the California Current System (CalCOFI
database). Kratzer et al.(2003) proposed an empirical relationship with
measurements realized in the Baltic Sea to obtain ZSD from the vertical
diffuse attenuation coefficient at the wavelength 490 nm (Kd(490) in
m−1), which is a standard product for some ocean color sensors. In
parallel to the ocean color sensors, some imager satellites such as Landsat
(suite of satellites launched from 1972 by US agencies), which have a
better spatial resolution but a worse radiometric sensitivity than ocean
color sensors, have been used to monitor the water clarity in lakes.
Kloiber et al.(2002) (and references therein) tested some relationships
between the Secchi depth and simultaneous measurement by Landsat
sensors. Several combinations of spectral reflectance values and spectral
band ratios were tested and a sensitivity analysis provided an optimal
form for all images. However, Kloiber et al.(2002) could not obtain a
standard relationship with coefficients valid for all images, which shows
the limits of empirical algorithms, in the case of visible imagery.

Comparatively to empirical algorithms, the semi-analytical algo-
rithms use approximations of the radiative transfer that relate
inherent optical properties (IOPs), and apparent optical properties
(AOPs) or radiometric quantities, in addition to empirical relation-
ships. They tend to catch part of the physics underlying variations in
ocean color (IOCCG, 2006). The advantage of using semi-analytical
algorithms is that most parameters of the algorithms can bemeasured
or calculated, and are documented in the literature. Many of the semi-
analytical algorithms proposed during the last decade are described
and tested in IOCCG(2006). More recently, Doron et al.(2007)
proposed a semi-analytical algorithm for the estimation of the vertical
diffuse attenuation coefficient Kd and the beam attenuation coefficient
c (m−1) for both oceanic and turbid waters. Its validation was
conducted with the simultaneous measurements at sea of IOPs and
AOPs, c, Kd, and the irradiance reflectances R (dimensionless) for
various waters, including estuarine, coastal and oceanic ones. Since a
tight relationship exists between ZSD and Kd+c, it is possible to adapt
this semi-analytical algorithm to estimate the ocean transparency
from ocean color satelliteborne data.

In the present study, we assess two semi-analytical algorithms: the
Quasi-Analytical Algorithm (QAA), developed and published by Lee et
al. (2002, 2005a,b) (IOCCG, 2006) and a modified version of the
algorithm developed by Doron et al. (2007) to retrieve the Secchi
depth from satelliteborne measurements (noted SA). We assess in
parallel an empirical algorithm (EMP). The algorithms are compre-
hensively validated with a large database containing in situ Secchi
depth measurements above various water types (coastal and oceanic)
and simultaneous satelliteborne data, from the MERIS, MODIS and
SeaWiFS sensors. Using ocean color archives, we calculated climatol-
ogies of ocean transparency over the North Sea, western Baltic Sea,
and Skagerrak and Kattegat straits.
2. Description of the algorithms

In this section, we present the successive steps necessary to convert
the spectral radiancesmeasured by the ocean color sensors to the ocean
transparency ZSD.

http://dx.doi.org/10.1029/2004JC002620
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Table 3
Summary of the obtained match-ups (with the SA algorithm) ventilated according to
the geographical location. The minimal andmaximal in situ values are shown inside the
parenthesis.

Geographical zone Data
provider

MERIS MODIS SeaWiFS

1—NW Mediterranean
Sea (Elbe)

EPSHOM,
Dyfamed,
Boussole

39 (5.5–40) 56 (5.5–40) 56 (5.5–40)

2—Bay of Biscay EPSHOM 60 (1–19) 92 (1–19) 79 (1–19)
3—Skagerrak and
Kattegat

IMR 32 (5–15) 66 (2–15) 59 (2–15)

4 North Sea BSH 51 (2.5–18) 80 (2–18) 82 (2–18)
5 South Pacific CNRS 7 (21.5–69) 13 (10.5–69) 14 (10.5–46)
6—Off California CALCOFI 102 (2–37) 126 (2–37) 135 (2–37)
7—English Channel EPSHOM 15 (0.05–5.5) 13 (1.5–5.5) 13 (0.25–5.5)
total 306 446 438
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2.1. Step 1: conversion of remotely sensed radiances to above-water and
in-water remote-sensing reflectances and to irradiances reflectances below
the surface

A treatment chain for the processing and merging of the ocean
color products has been implemented in the framework of the
Globcolour project (www.globcolour.info). In this chain, the standard
output is the fully-normalized water-leaving radiance nLw(0+, λ) (in
Wm−2 sr−1 nm−1), where nLw is defined byMueller andMorel, 2002
as:

nLw 0þ
;λ

� �
= Lw 0þ

;λ; θ;ϕ
� � F0 λð Þ

Ed 0þ;λð Þ : ð1Þ

In Eq. (1), Lw(0+,λ, θ,ϕ) is thewater-leaving radiance above the sea
surface (in μW cm−2 sr−1 nm−1), F0 λð Þ is the extraterrestrial solar
spectral irradiance at mean earth-sun distance (in μW cm−2 nm−1),
and Ed(0+,λ), the downward irradiance can be expressed in the same
unity as F0 λð Þ (in μW cm−2 nm−1). In Eq. (1), λ (nm) stands for the
wavelength dependence and the angles θ and ϕ (in degrees) are the
viewing zenith angle and the azimuth angle and stand for the viewing
geometry.

By its definition, the above-water remotely-sensed reflectance, Rrs
(0+, λ) (in sr−1) can thus be easily calculated following Eq. (2).

Rrs 0þ
;λ

� �
=

nLw 0þ
;λ

� �
F0 λð Þ ð2Þ

And the in-water remotely-sensed reflectance, rrs(0−, λ) (in sr−1)
are deduced from Rrs(0+, λ) using the equation proposed by Lee et al.
(2005a):

rrs 0−
;λð Þ = Rrs 0þ

;λ
� �

0:52 + 1:7Rrs 0þ;λð Þ ð3Þ
Table 4
Main statistical quantities for the different sensors (MERIS, MODIS and SeaWiFS) and the Q

R2 RMS Bias Mean ratio Mean percent diff

MERIS QAA 0.63 14.58 11.77 2.39 140.59
MERIS SA 0.54 8.05 4.44 1.79 87.23
MERIS EMP 0.68 5.54 0.97 1.42 60.07
MODIS QAA 0.52 15.17 12.06 2.23 126.09
MODIS SA 0.57 8.90 6.29 1.74 78.83
MODIS EMP 0.72 5.04 0.89 1.15 33.05
SeaWIFS QAA 0.50 15.93 12.64 2.25 128.04
SeaWIFS SA 0.60 9.25 6.86 1.74 78.16
SeaWIFS EMP 0.73 5.10 1.44 1.16 33.43
Both Rrs(0+, λ) and rrs(0−, λ) are used for the QAA algorithm.
Indeed, rrs is calculated at 440, 490, 555 and 670 nm from nLw and the
Rrs are calculated as intermediate quantities to estimate Rrs(640),
which is a necessary for QAA-640 (see Appendix A for details).

The development of the semi-analytical algorithm by (Doron et al.,
2007) relied upon the knowledge of the in-water reflectances R(0−)
(dimensionless) derived from the satellite remotely-sensed reflec-
tances ρw (in sr−1). By definition, R(0−) is the ratio of the upwelling
irradiance, Eu(0−,λ), to the downwelling irradiance, Ed(0−,λ), right
below the sea surface, both expressed in the same units (in
μW cm−2 nm−1 for instance):

R ð0−
;λÞ = Euð0−

;λÞ
Edð0−;λÞ ð4Þ

and ρw is defined according to:

ρw 0þ
;λ; θ;ϕ

� �
=

πLw 0þ
;λ; θ;ϕ

� �
Ed 0þ;λð Þ : ð5Þ

Since the relationship between R(0−) and ρw was extensively
studied, for instance by Gordon(2005) and Morel and Mueller(2002),
we took advantage of the possibility to convert nLw to ρw (Eq. 6) using
published results from the literature:

ρw 0þ
;λ; θ;ϕ

� �
=

πnLw 0þ
;λ

� �
F0 λð Þ : ð6Þ

The conversion from R to ρw is made following the SeaWiFS
protocol document (Morel & Mueller, 2002):

ρw λð Þ = πR 0−
;λ; θs; IOPsð Þ

Q 0−;λ; θ′;ϕ; θs;τa;W; IOPsð Þ
1−ρ θsð Þ

1−rR 0−;λ; θs; IOPsð Þ
1−ρ θ′; θð Þ

n2

� �
ð7Þ

where θ and θ′ are the incident and refracted viewing angles (in °),
Q (dimensionless) is the bidirectional factor, θs is the solar zenith
angle (°), τa stands for the atmospheric optical thickness (dimen-
sionless), W for the wind speed (m s−1), IOPs for the inherent
optical properties, which here are mainly the absorption coefficient
and the backscattering coefficient, ρ(θ′,θ) is the Fresnel reflection
for the collimated beams at the associated directions θ and θ′, n is
the refractive index of seawater, r is the mean (water–air) Fresnel
reflectance for the whole diffuse upward flux, and ρ stands for the
(air–water) Fresnel reflection at the interface that applies to the
whole downward irradiance from the sun and the sky. The value of r
is about 0.48 (Morel & Mueller, 2002).

Gordon(2005) studied extensively the variations of the term
1−ρ θsð Þð Þ 1−ρ θ′; θð Þð Þ

n2 and found its value to be very close to 0.529

for very large variations in wind conditions and solar angles. This
value is hereafter noted R0 and Eq. (7) simplifies to Eq. (8).

ρw λð Þ = πR 0−
;λ; θs; IOPsð Þ

Q 0−;λ; θ′;ϕ; θs;τa;W; IOPsð Þ
R0

1−rR 0−;λ; θs; IOPsð Þ
� �

ð8Þ
AA, SA and empirical algorithms (based on match-ups for all regions).

Median percent diff Min in situ Max in situ Min sat Max sat

1100.93 0.05 69.00 1.77 68.28
522.55 0.05 69.00 1.57 43.81
314.81 0.05 69.00 1.34 38.69

1093.30 1.00 69.00 1.39 80.77
645.29 1.00 69.00 1.65 55.80
244.45 1.00 69.00 1.26 41.88

1109.21 0.25 70.00 0.19 79.67
639.25 0.25 46.00 1.65 55.51
251.10 0.25 46.00 1.22 42.46
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Fig. 1. Scatterplot of ZSD versus [chl a], for in situ measurements captured during the
Calcofi campaigns.
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and the measured
1

Kd 490ð Þ + c 490ð Þ for the in situ COASTLOOC dataset. The estimates of 1
K̂d 490ð Þ + ĉ 490ð Þ
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Using Eq. (8), one can easily calculate R from ρw, provided the
knowledge of thevariationsofQ , relatively to the illumination condition,
the IOPs and so on. Loisel andMorel, 2001 studied the variations of Q for
two very different types of Case 2 waters (optically complex waters,
Morel & Prieur, 1977), one sediment-dominated and the other yellow-
substance-dominated, and (Park & Ruddick, 2005) proposed to model
the value of Q , using numerous radiative transfer simulations. In the
present study, the value of 4 for Q has been adopted, because the
algorithmwas found to be poorly sensitive to the value of Q. Finally, we
use Eq. (9) to retrieve R from ρw, and Eq. (10) to retrieve R from nLw.

R =
Qρw

πR0 + Qrρw
ð9Þ

R =
QLwn

R0F0 + QrLwn

ð10Þ

The reflectances R(0−) are used as inputs for both the semi-
analytical algorithm presented below and the empirical algorithm
also proposed in the present study.

2.2. Step 2: estimation of a(490) and bb(490) from the spectral Rrs(0
+, λ)

with the QAA method

A first possibility to calculate the absorption coefficient a(490) and
the backscattering coefficient bb(490), both in m−1, from the spectral
Rrs(0+, λ) is to use the QAA algorithm developed by Lee and co-
workers. Since this algorithm has been implemented in slightly
different versions in different papers, the equations we used here are
gathered in the Appendix A. The input data for this algorithm are the
ocean reflectances at four wavelengths: 440, 490, 555 and 670 nm.
Theremay be slight variations in the nominal center of the wavebands
due to the technical specifications of each of the satellite sensors.

2.3. Alternative for step 2: use of the adapted semi-analytical algorithm
developed by Doron et al.(2007)

A second possibility to calculate a(490) and bb(490) from two R
(0−, λ) is to use the semi-analytical algorithm developed by Doron
et al.(2007), noted SA. The inputs of the latter algorithm are the
reflectances at two wavebands: one in the visible (490 nm) and the
other in the near infrared (709 nm) waveband. The SeaWiFS and
MODIS sensors do not perform measurements in the 709 nm
waveband and the MERIS sensor data has a low signal-to-noise ratio
in the near infrared (NIR) waveband, as viewed during our match-up
exercises. This is the reason why, in the present study, we adapted the
algorithm of Doron et al.(2007) to use instead two wavelengths λ1

and λ2 in the visible (490 and 560 nm). In this adaptation, we use the
notation ares(λ) to designate the residual absorption coefficient,
defined as the total absorption coefficient minus the pure water
absorption coefficient: ares(λ)=a(λ)−aw(λ). We observed in the
large database COASTLOOC (described hereafter in the Material and
Methods section) that the ratio ares(490) /ares(560) is little variable
and we note its value α490−560. The other assumption, similar to the
one already implemented by Doron et al.(2007) is that the ratio of the
backscattering coefficient at the two wavebands 490 and 560 nm is
quasi-constant, B490−560≡ bbpð490Þ

bbpð560Þ = 1:003.
The semi-analytical algorithm obtained using this assumption is

described with more details in Appendix B, but the final equations are
summarized in Eqs. (11) and (12):

bb 490ð Þ = bbw 490ð Þ + N
D

with

N = −B490−560bbw 560ð Þ + B490−560
aw 560ð Þ
f 560ð Þ R 560ð Þ

+ α490−560B490−560
f 490ð Þ
f 560ð Þ

R 560ð Þ
R 490ð Þ bbw 490ð Þ

−α490−560B490−560
R 560ð Þ
f 560ð Þ aw 490ð Þ

D = 1−α490−560B490−560
f 490ð Þ
f 560ð Þ

R 560ð Þ
R 490ð Þ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð11Þ

að490Þ = f ð490Þ bbð490Þ
Rð490Þ ð12Þ

In this case, the estimates of a(490) and bb(490) are obtained using
only two irradiance reflectances R (at 490 and 560 nm).

http://dx.doi.org/10.1029/2006JC004007
http://dx.doi.org/10.1029/2006JC004007
http://dx.doi.org/10.1029/2006JC004007
http://dx.doi.org/10.1029/2006JC004007
http://dx.doi.org/10.1029/2006JC004007
image of Fig.�2


1/[Kd(490)+c(490)] (m)

1/[Kd(490)+c(490)] (m)

0

2

4

6

8

10

12
Atlantic Ocean
Baltic Sea
English Channel
Mediterranean Sea Case 1
Mediterranean Sea Case 2
North Sea
1:1 line

0 2 4 6 8 10 12

0.01 0.1 1 10
0.01

0.1

1

10
Atlantic Ocean
Baltic Sea
English Channel
Mediterranean Sea Case 1
Mediterranean Sea Case 2
North Sea
1:1 line

1/
[K

d
(4

90
)+

c(
49

0)
] Q

A
A

 (
m

)
^

^
1/

[K
d
(4

90
)+

c(
49

0)
] Q

A
A

 (
m

)
^

^

B

A

Fig. 4. Relationship between the estimated
1

K̂d 490ð Þ + ĉ 490ð Þ
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2.4. Step 3: estimation of Kd(490) and c(490) from a(490) and bb(490)

Once estimates of a(490) and bb(490) (either with the QAA or the
SA) are obtained, Eq. (11) from Lee et al.(2005a) was used to estimate
Kd(490) from a(490), bb(490) and the solar zenith angle θs above the
water (see Eq. 13):

K̂d 490ð Þ = 1 + 0:005 θsð Þâ 490ð Þ + 4:18 1−0:52e−10:8â 490ð Þ� �
b̂b 490ð Þ ð13Þ

Loisel et al.(2007) proposed an empirical relationship between the
particulate backscattering coefficient bbp and scattering coefficient bp
(in m−1) in coastal areas at the wavelength 650 nm, based on
simultaneous in situ measurements, (see Eq. 14).

bbp 650ð Þ = 0:0137 bp 650ð Þ + 0:00045 ð14Þ

Using data from the in situ bio-optical database COASTLOOC, and
considering the measured scattering coefficient bp(490) versus the
estimates of bbp(490), obtained with our semi-analytical algorithm,
shows that their fit agrees well over the range of values covered by
their dataset (bp(650) between 0.2 and 4 m−1).

2.5. Step 4: the Secchi depth equation

According to Tyler(1968) and Preisendorfer(1986), the Secchi
depth ZSD can be expressed by an equation that describes the photopic
contrast reduction for a vertical path of sight in a homogeneous
medium (Eq. 15):

ZSD =
ln

C0

Cmin

� 	
Kd vð Þ + c vð Þ =

γ0

Kd vð Þ + c vð Þ ð15Þ

where c(v) is the visual photopic beam attenuation coefficient (in
m−1), Kd(v) is the visual photopic vertical diffuse attenuation
coefficient of the medium (in m−1), (here v stands for visual), C0 is
the inherent contrast between the disk and background water, Cmin is
the minimum apparent contrast perceivable by the human eye under
daylight (both contrasts are dimensionless), and γ0 is the coupling
constant (dimensionless).

Eq. (16) below, obtained by Doron et al.(2007), allows estimating
Kd(v)+c(v) from Kd(490)+c(490):

P xð Þ = 0:0989x2 + 0:8879x−0:0467 ð16Þ

where x stands for Kd(490)+c(490) and P(x) stands for Kd(v)+c(v).
Eq. (15) provides the link between the estimated [Kd(v)+c(v)]−1

and the Secchi depth. The contrast can be written as γ0 = ln C0
Cmin

. The
inherent contrast, C0, depends on the optical properties of the disk and
of the background water column (Eq. 17), where the RSD is the
reflectance of the Secchi disk and R∞ is the reflectance of the
environment:

C0≡
RSD−R∞

R∞
: ð17Þ

The quantity Cmin has been measured by Blackwell(1946) and
reported by Tyler(1968). Preisendorfer(1986) gives some resulting
values of the coupling constant between 5 and 10 for varying
conditions. A reasonable value for RSD can be 0.82, since the Secchi
disk is painted in white in order to be highly reflective. In this
formulation, the calculation of the contrast is not wavelength-specific.
Since 490 nm is the wavelength for which the light usually penetrates
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Fig. 5. Map of the spatial distribution of the match-ups.

Table 5
Summary of the statistics for the Type II regression between the in situ ZSD and the
estimated ZSD. The estimated ZSD can be calculated with three different sensors and
with different algorithms (QAA, SA and empirical).

A = Type II intercept SD(A) B = Type II slope SD(B)

MERIS QAA 5.79 1.09 1.45 0.10
MERIS SA 5.09 0.69 0.96 0.07
MERIS EMP 1.80 0.61 0.95 0.06
MODIS QAA 6.34 1.04 1.43 0.10
MODIS SA 5.48 0.70 1.06 0.06
MODIS EMP 0.17 0.56 1.05 0.05
SeaWIFS QAA 6.24 1.08 1.46 0.10
SeaWIFS SA 3.95 0.56 1.22 0.05
SeaWiFS EMP −0.84 0.40 1.17 0.04
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deeper, we used the reflectance at 490 nm to better reproduce the
photopic contrast reduction (Eq. 18).

γ0 490ð Þ = ln
C0 490ð Þ
Cmin

= ln

RSD 490ð Þ−R∞ 490ð Þ
R∞ 490ð Þ
Cmin

ð18Þ

2.6. Summary of the different steps of the algorithms

The input quantities are the sun zenith angle θs and the nLw at 440,
490, 555 and 670 nm (QAA) or at 490 and 560 nm (SA) from MERIS,
MODIS or SeaWiFS sensors. The reflectances are converted into
irradiance reflectances just below surface R or above-water remote-
sensing reflectances Rrs. The latter quantities are processed to retrieve
a(490) and bb(490) then Kd(490) and c(490). An empirical relation-
ship (second order polynom) is used to estimate Kd(v)+c(v) from Kd

(490)+c(490). ZSD is finally obtained by multiplying
1

Kd vð Þ + c vð Þ by
the coupling constant γ0(490), calculated for each station.

2.7. Alternative algorithm: empirical algorithm (EMP)

For practical reasons, an empirical algorithm was developed and it
directly links R(490) and R(560) to ZSD. It is based on the observation
that, in the in situ dataset, there is a strong relationship between the

ratio R(490)/R(560) and
6

Kd 490ð Þ + c 490ð Þ, which is a proxy of ZSD.

Eq. (19) provides ZSD, from R(490) and R(560), when they are ob-
tained previously from nLw(490) and nLw(560).

ZSD = 1:888γ0
R 0−

;490ð Þ
R 0−;560ð Þ−0:52
� 	

ð19Þ

A prior “quality control” is done before applying Eq. (19), which
consists in the following criterion: 0.005bR(490)b0.22, 0.006bR
(560)b0.3 and 0.22bR(560)/R(490)b3.5. The same criterion is also
applied for the SA algorithm. The “quality control” applied to the QAA
algorithm is to check the positiveness of the quantities a(490) and bb
(490). The two different sets of quality control for the algorithms may
lead to some very small differences in the number of match-ups.

3. Material and methods

To assess the results given by the different algorithms described
above, we used different datasets. The first one consists in measure-
ments of bio-optical properties in European coastal waters (COAST-
LOOC). The second one consists in a large data set of in situ
measurements of Secchi disk depths in various places. Simultaneous
measurements gathered by the ocean color sensors MERIS, MODIS
and SeaWiFS have been considered to obtain a match-up database.

3.1. COASTLOOC dataset

The COASTLOOC dataset has been obtained on more than 400
locations around Europe in coastal and oceanic waters. The measured
inherent optical properties (IOPs) have been described by Babin et
al.(2003a) for the variations in the absorption coefficient and in Babin
et al.(2003b) for the variations in the scattering coefficient. The
measurements of the vertical diffuse attenuation coefficient Kd and
the irradiance reflectances R have been previously described byDoron
et al.(2007). This dataset spans a wide range of natural water
conditions: from turbid to clear, and from CDOM-dominated (CDOM
stands for colored dissolved organic matter) to NAP-dominated
coastal waters (NAP stands for non-algal particles). It is used here to
parameterize some of the empirical relationships necessary for the
development of the algorithms (α490–560=ares(490) /ares(560),
B490−560≡ bbpð490Þ

bbpð560Þ). It also serves to show the validity of the adapted
semi-analytical algorithm (using the wavebands 490 and 560 nm).

3.2. In situ measurements

The Secchi diskmeasurements follow a simple protocol, such as the
one described by Preisendorfer(1986). Secchi disk depth measure-
mentswere gathered to develop a database of simultaneous in situ and
satelliteborne measurements. Historical data cannot be used because

http://dx.doi.org/10.1029/2001JC000882
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of the recent launch of SeaWiFS (1997) and both MERIS and MODIS
(during the year 2002). We gathered data from different oceano-
graphic campaigns, to cover various environments such as open and
coastal environments, from clearwaters to turbid ones. A total of more
than 1000measurements taken after 1st July 2002 are considered over
a period of a few years, in theMediterranean Sea, the Bay of Biscay, the
English Channel, the North Sea, the Skagerrak and Kattegat straits, the
Californian Current System, and the tropical South East Pacific Ocean.
Table 2 provides a summary of in situ measurements by name of the
campaigns, and the number of measurements, the minima and
maxima in measured values, and the date of measurements.
3.3. Match-upswith remotely sensed ocean color data:MERIS, MODIS and
SeaWiFS

For the present study, the nLw from the Globcolour project were
used for the three sensors. The initial data were provided by the
European Space Agency (ESA) for the MERIS sensor and by the NASA
for the MODIS and SeaWiFS data. All data were then processed by the
company ACRI-ST (Sophia Antipolis, France).

A match-up is here defined as an in situ measurement made
simultaneously with a remote sensing one. To get a substantial
number of match-ups, we considered that the temporal simultaneity
was achieved as long as the delay between the in situ measurement
and satellite overpass was less than two days. To reduce the pixel-to-
pixel natural variability, we considered not only the closest pixel, but
also any pixel within a distance of 9 km. A given ensemble of pixels
(i.e. the valid pixels within a distance of 9 km from the in situ
measurement) is called here a macro-pixel. Our definition of a match-
up may seem loose, but with this approach, we obtained finally only
306 match-ups with MERIS images and the SA algorithm. There are
respectively 446 and 438match-ups withMODIS and SeaWiFS images
for a total of more than 1000 in situ measurements. We know we add
some scatter to the data due to these spatial and temporal ranges, but
in the same time for waters with reasonable spatial and temporal
variability, it allows to gather more data and have some statistics. In
the future, it will be possible, as more and more match-ups will be
gathered to refine the time lag between the measurements at sea and
the satellite measurements and possibly to quantify the scatter of the
retrieval due to the spatio-temporal mismatch. We note that there are
systematically more match-ups with the MODIS and SeaWiFS sensors
than with the MERIS sensor because they have a larger swath than the
MERIS sensor and have a different quality control, probably less
restrictive. In addition, MERIS is often affected by sunglint.
4. Results and discussion

In this section, we assess the performance of three algorithms
(QAA, SA and EMP)with the three different sensors. First, we use the in
situ COASTLOOC data set to assess the ability of the SA described in the
Appendix B, to retrieve [Kd(490)+c(490)]−1 with the reflectances at
490 and 560 nm instead of 490 and 709 nm as originally published by
Doron et al.(2007). Second, we present the results from match-up
comparisons between Secchi depths estimated using the three
algorithms from remote sensing data, and measured in situ. The
algorithms are tested for MERIS, MODIS and SeaWiFs data. For each
comparison, we provide a number of statistics to allow a comprehen-
sive comparison between algorithms: determination coefficient R²,
RMS, bias, mean ratio, mean percent difference, median percent
difference, and minimum and maximum values for estimates and in
situ data (see Table 3).We also provide the Type II regression intercept
and slope with their associated error bars, following Isobe et al.(1990)
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(see Table 4). This aims to precisely quantifying the performances of
the algorithms. All the equations used to calculate these statistical
quantities are detailed in Appendix C.

4.1. Why trying to go directly from ocean color reflectances to Secchi
depth?

Several previous studies took advantage of the strong relationship
between the chlorophyll a concentration ([chl a]) and the Secchi
depth generally observed in oceanic waters, to address biogeochem-
istry problems. For instance, Simonot and Le Treut(1986) used an
empirical approach to convert the historical Secchi depth into [chl a]
to investigate the potential variations in the phytoplanktonic content
at decadal timescales. Such an empirical relationship was also used by
Lewis et al.(1988) to investigate the variations in the primary
productivity. In the way around, Morel et al.(2007) proposed an
empirical algorithm to derive the Secchi depth from ocean color in
Case 1 waters, which uses a [chl a]-based empirical parameterization.
None of those approaches are valid for coastal (so-called Case 2)
waters, because the Secchi depth in such waters is strongly affected
by resuspended particles, and by the dissolved and particulate
material brought by rivers, in addition to phytoplankton and
covarying optically significant material. Fig. 1 illustrates this asser-
tion. It shows a scatterplot of ZSD versus [chl a] for a large and
consistent dataset collected over many years in the frame of the
Calcofi program (www.calcofi.org). Measurements from the Calcofi
program can be considered as being both from Case 1 (oceanic) and
Case 2 (coastal) waters, where Case 1 and Case 2 waters have been
defined by Morel and Prieur(1977). Large variations in ZSD are found
for a given [chl a] and reciprocally in [chl a] for a given ZSD, although
all measurements are coincident and performed simultaneously
at sea, which avoids a number of sources of error (e.g. spatial and
temporal mismatch, atmospheric corrections).

4.2. Validation of the algorithms on the COASTLOOC dataset

The advantage of the COASTLOOC dataset is that it includes
simultaneous measurements of IOPs (such as c) and AOPs (Kd and R),
but unfortunately, and due to the protocol used (most measurements
carried out from an helicopter platform), it contains no Secchi depth
measurements. This prevents us from testing directly the algorithms
examined here with simultaneous Secchi depth measurements. With
this dataset, we assess the quality of the retrieval of the optical
quantity [Kd(490)+c(490)]−1 with the QAA (see Appendix A), the
semi-analytical algorithm modified from Doron et al.(2007) (SA
algorithm, see Appendix B) and the empirical algorithm (EMP).

Fig. 2 shows the scatterplot of estimated versus measured [Kd(490)+
c(490)]−1. A very good agreement is found with a determination
coefficient R² of 0.85, and no regional bias except for theNorth Sea at very
low Secchi depth values. Because all variables (R, Kd anc c) are subject to
measurement errors,we consider the statistical results fromType II linear
regresssions. The slope and intercept are respectively 1.04 and 0.053.
Fig. 3 shows the scatterplot of 6/[Kd(490)+c(490)], which is a good
approximate of ZSD, versus the ratio of the reflectances at 490 and560 nm,
which forms the basis of the EMP algorithm. One can see in Fig. 3A, in
linear scale a good correspondence between the two quantities, whereas
it is less satisfactory, when observed in log-scale, for instance with ratios
with value lower than 1. Fig. 4 shows the scatterplot obtained when
considering the QAA results on the COASTLOOC dataset. The results of
QAA are equivalent of the SA algorithm, as was already noticed by Doron
et al.(2007). The comparison between the three algorithms on the in situ
dataset is complementary from the comparisons of their results for the
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satellite dataset. It shows that the three algorithms are efficient in
retrieving large values of [Kd(490)+c(490)]−1, but they behave
differently for low values, for instance in the North Sea (overestimation
by SA and underestimation by EMP).

4.3. Validation with in situ Secchi depths measurements

The validity and robustness of an algorithm dedicated to be used
at large scale has to be tested under realistic conditions. In our case,
the radiance measurements come from satelliteborne ocean color
sensors, either MERIS, MODIS or SeaWiFS. To assess the quality of the
estimation of ocean transparency, it was necessary to compare ZSD
estimated from the satellite data and the simultaneous in situ
measurement. This approach with match-ups allows a full validation
of the transparency algorithms (including our estimation of the
contrast), which was not possible with the COASTLOOC dataset.
However, it does imply additional sources of error. First, when using
remotely sensed data, one has to rely upon the quality of the
atmospheric corrections. The signal from the ocean produces around
10% of the signal measured at the top of the atmosphere for clear
waters (Morel, 1980), and the atmospheric corrections are a non-
negligible source of error in the retrieval of the water-leaving
radiances. There is currently no consensus on how to perform ac-
curate atmospheric corrections over turbid waters (Lavender et al.,
2005; Moore et al., 1999; Ruddick et al., 2000; Stumpf et al., 2003).
Second, there is some spatial and temporal mismatch between in situ
and satellite measurements, amplified in coastal waters because of
the high spatial patchiness combined with the often-intense
dynamics. Third, the size of one pixel seen from space is around
1 km2 large and one in situ measurement might not be representa-
tive of the entire pixel or macro-pixel. Fourth, Secchi measurements,
although easy to perform, are subject to measurement errors and
uncertainties. Compared with the use of only in situ optical data,
the combined use of ocean color satellite data and in situ data for
validation purpose thus involves additional sources of error. Therefore,
algorithm validation presented here is the most conservative.

Table 3 provides the number of match-ups used for the validation
according to their geographical area. We narrowed down our data set
to N1=306match-ups for MERIS, N2=446match-ups for MODIS and
N3=438 match-ups for SeaWiFS, while starting frommore than 1000
Secchi depth measurements. A few outliers were discarded based on
the observation of corresponding images (true color compositions),
which showed areas largely covered with clouds with small openings,
which is a probable reason for the bad quality of the input data. Fig. 5
shows the location of the match-ups on a global map.

For each couple {sensor, algorithm}, we show how estimated and
measured Secchi depth compare with a scatterplot, and we provide
related statistics as described above and in Appendix C. Results are
given in Table 4. In addition, to compare graphically the performance
of the three different algorithms, we draw on a single plot the
regression lines for the QAA, SA and EMP algorithms. We also show
the average match per bins of Secchi depths. In the latter case, the
matches are taken perpendicular to the regression line as explained in
Appendix C. The type II regression coefficients and uncertainties are
gathered in Table 5.

Fig. 6 shows the results for the MERIS sensor. The in situ data
ranges between 0.05 and 60 m, with only very few points between 40
and 60 m, whereas the satellite data range between 0.4 and 58 for
QAA, between 1.2 and 43 for SA and .3 to 38 for EMP. Since there is
only one extreme in situ data (ZSD=69 m), the range of the plots
often stops at 60 m to focus on the majority of the data. One can see
that there is more scatter with the QAA in general and that QAA tends
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to overestimate ZSD for large ZSD. The determination coefficients are
0.54 (SA), 0.68 (EMP) and 0.63 (QAA). The QAA tends to overestimate
ZSD systematically which drives to a non-negligible intercept of 5.8 m
and a large slope of 1.45. The intercept for SA is in the same order of
magnitude (5.1 m), but the slope is closer to 1 (0.96). The EMP
intercept is lower (1.8 m) and it shows less scatter than both SA and
QAA. EMP shows here to be more robust with the satellite data.

Fig. 7 shows similar scatterplots than Fig. 6, but this time, based on
the MODIS satellite measurements. With MODIS, the R2 are
respectively 0.57 (SA), 0.52 (QAA) and 0.72 (EMP). Generally, QAA
overestimates the large ZSD. The largest scatter of the data is seen with
Fig. 9. A Climatology from (Aarup, 2002) obtained with historical Secchi depth in the straits b
Skagerrak and Kattegat straits over the three years 2003–2005 obtainedwith theMERIS data
climatology.
QAA (specially for large ZSD), it reduces for SA and reduces again for
EMP. It is as the EMP algorithm was more robust relatively to the
uncertainty in the satellite reflectances. With MODIS data, the linear
regression line closest to the 1:1 line is obtained with EMP (intercept
I=0.2 m, slope S=1.05), then with SA (I=5.5 m, S=1.06) with the
larger deviation experienced by the QAA (I=6.3 m, S=1.43).

Fig. 8 shows the results of the estimation of ocean transparency
from space with the SeaWiFS data. The results of the three algorithms
are consistent with what was previously obtained with the other two
sensors, with R2 of 0.6 (SA), 0.5 (QAA) and 0.73 (EMP). This time, for
the three algorithms, the linear regression line slope is significantly
etween the North Sea and the Baltic Sea. B. Climatology of the water transparency in the
and the empirical algorithm. C. Associated standard deviation obtainedwith the satellite
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larger than 1 and the intercept increases from−0.84 (EMP) to 3.95 (SA)
to 6.24 (QAA).

One can note that for ocean transparencies around 10 m in the
North Sea and the Bay of Biscay data, there is often a general
overestimation for these two regions. It has to be noted that these
oceanic regions are well known for their relatively high content in
suspended particulate matter (SPM), compared to the open ocean.
Failures in atmospheric corrections have been reported by Gohin et al.
(2002) in the Bay of Biscay.

Three values of the South Pacific are largely underestimated by the
semi-analytical algorithm. The reason might be that, for such very
clear waters (more than 40 m of Secchi depth), subtle changes in the
properties of the water (beam attenuation and vertical diffuse
attenuation coefficient) lead to a large change in the Secchi depth.
Our semi-analytical algorithm might not be sensitive enough to grab
such changes through the estimation of Kd(490) and c(490) and
cannot take into account the vertical variability of these two
coefficients. The slight differences between the two sets of quality
control for QAA on one hand and SA and EMP on the other hand
appear for the clearest stations of the SE Tropical Pacific Ocean. With
QAA the clearest in situ stations are 43, 59.5, 69 and 70 m whereas
there are only the 43 and 46 m stations with SA and EMP.

In general, the three algorithms perform well in retrieving the
ocean transparency from space, though with variations depending on
the sensor and the algorithm. The EMP algorithm tends to be rather
robust, with larger R2 and linear regression lines closer to the 1:1 line.
The SA algorithm shows more scatter than EMP, has smaller R2 and
linear regression line with non-zero intercepts, although the slope is
relatively close to 1. The QAA exhibits systematic overestimation for
large ZSD, which in turn impact the regression line.

The development of the SA algorithmhas beenmadewith the use of
literature data, and in situ bio-optical data (COASTLOOCdata set),which
means in total independence of the satellite dataset. The comparison of
the simultaneous measurements of satellite and in situ ocean
transparency directly provides the results described above, without
any need to calibrate the data, although there are many sources of
uncertainty: radiometric measurements, atmospheric corrections,
algorithm sensitivity, in situ measurement errors, spatio-temporal
coincidence. The range of validity of the SA algorithm is restricted to
the range of the in situ Secchi depth database used for validation
purposes, which is between 0.05 m (or more reasonably 1 m) and
around 30 m (since only a few measurements were larger than 35 m).
Further validation could be completed with an extended dataset
including deeper Secchi measurements, but these very transparent
waters are less commonly sampled (Megard & Berman, 1989).

Considering the general results given by the three algorithms (QAA,
SA and EMP) with the three sensors, as detailed with the statistical
quantities, it appears that the EMP algorithm is the least biased. We
showed above using the in situ COASTLOOC database that the semi-
analytical algorithms (SA and QAA) perform better than the empirical
one, especially in being less sensitive to region-to-region differences in
the optical behavior. When using satellite data, retrieved water
reflectance is affected by error in atmospheric corrections, especially
in turbid waters. The semi-analytical algorithms tested here use
reflectance ratios and reflectance absolute values. The empirical
algorithm tested here only uses a reflectance ratio. The first order
error in retrieved reflectance due to bad atmospheric corrections over
turbidwaters is found inmagnitude rather than shape of the reflectance
spectrum. This is why the empirical algorithm proves to bemore robust
when using actual satellite data, and why we use the EMP algorithm in
what follows.

4.4. Validation with the climatology over the Skagerrak and Kattegat
straits published by Aarup (2002)

Aarup(2002) gathered from local archives past measurements of
Secchi depths made in the North Sea and Baltic Sea during the last
century and proposed climatologies (annual and seasonal average) of
the Skagerrak and Kattegat straits at the resolution of 0.5°. Using the
EMP algorithm and all theMERIS data available for themonth of August
for the years 2003, 2004 and 2005, we calculated the climatology of the
ocean transparency over the Skagerrak and Katteg straits, which is the
transition zone between the North Sea and the Baltic Sea. Fig. 9A shows
the climatology obtained by Aarup(2002) and Fig. 9B shows the average
obtained with the EMP algorithm for the three years of data. Both
climatologies are representedwith the same color code. Fig. 9C displays
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the standard deviation obtained over the area with the EMP algorithm.
The satellite data show clearly the transition between the coastal areas,
surrounding the coast, which have very low ocean transparencies. The
orders ofmagnitude of the data agreewell and some seasonal variations
can be seen (seasonal climatologies not shown). From the shore to open
waters, ZSD increases systematically. It is particularly visible around the
shore ofDenmark. TheNorth Sea has “clearer”waters ofmore than14 m
of ZSD, with less variability than coastal waters. The standard deviations
are larger in the open ocean than close to the shore. There is a lot more
satellite data, even on short time scales, compared to historical data. The
historic dataset shows some blank areas with few or nomeasurements,
which occurs rarely with satellite borne sensors. While remote sensing
providesmuchmore data than in situmeasurements,with larger spatial
and temporal variations, the possibility of systematic biases is also
increased.

An example of a global map derived from the Globcolour radiance
(www.globcolour.info) is shown in Fig. 10 for the month of January
2003. The general features of the ocean are easily recognizable, with
the clearer waters in the subtropical gyres for instance. The coastal
areas show generally less clear waters, due to the mixture with turbid
waters, with resuspension of particulate matters from the bottom or
due to large water productivity.

5. Conclusion

In this study, we present a semi-analytical algorithm to estimate
the ocean transparency from space with the use of ocean color data.
The development of the SA algorithm is totally independent from the
satellite dataset on which it is validated. Alternative algorithms: such
as the semi-analytical QAA and an empirical (EMP) algorithm are also
assessed. The algorithms provide an efficient way of estimating the
ocean transparency for three currently flying sensors: MERIS, MODIS
and SeaWiFS. This study is one of the very few to actually compare in
situ and satellite measurements, including all measurement errors
(Melin et al., 2005, 2007; Zibordi et al., 2006).

Among the strengths of the algorithms presented here are the
following: two of them are semi-analytical and the recent study by the
IOCCG (IOCCG, 2006) proved that the semi-analytical algorithms in
general provide better results in the inversion of ocean color signal into
biogeochemical quantities for optically complex waters, than empirical
algorithms. Additionally, the algorithms proved to bevalid over all types
Fig. 10. Average of one month of the Secchi depth at global scale (January 200
of water; and more specifically speaking, there is no sharp boundary
between Case 1 and Case 2 waters, which is very convenient for
operational purposes. There is also no frontier between geographical
regions, except when failures in atmospheric corrections impede the
quality of the input data, such as marine radiances. From a practical
point of view, the inputs of the algorithms are the normalized water-
leaving radiances, which are delivered nearly operationally, for instance
in the merging project Globcolour. Hence the algorithms are directly
applied on the standard products. The algorithms have proven to be
largely validated, since the present satellite validation has been
conducted for different water types in various areas around the world
and obtained byvarious investigators. In the present study, one cannote
that while semi-analytical algorithms provide the most promising
results on in situ data, the empirical one proves to be more robust on
remote sensing data because it is less sensitive to error due to erroneous
atmospheric corrections.

A new climatology of ocean transparency is proposed for the
Skagerrak and Kattegat straits. Similarly, new climatologies can be
obtainedwith satelliteborne data to get information about the present
state of ocean transparency and to fill the gap between in situ
measurements sparsely distributed in time and geographical position.
Whenever some historical data are present, the comparison between
past and present state could be made, to evaluate any trend in ocean
transparency. If available, further assessment of the quality of the
algorithm can be done if regional monitoring programs are providing
Secchi depth, thus extending the match-up dataset.

Further improvement in the development of the algorithms could
take into account the sea roughness through the wind speed
(Preisendorfer, 1986) or a better quantification of the bidirectionality
factor in the remote sensing data (Park & Ruddick, 2005). As soon as
larger datasets will be available, it will also be possible to restrict the
time window between measurement time and satellite overpass. This
should improve the consistency between measured and estimated
Secchi depth, especially in coastal waters for which the timescales are
shorter and the patchiness can affect the results. The effect of
heterogeneity at the sub-pixel level on the marine reflectance could
also help to quantify and understand the error bar on the data.

The present study paves the way to the use of ocean color data
operationally for environmental management systems purposes. Ocean
transparency, with its proxy ZSD, is mentioned in the European
Environmental Agency reports (AEE, 2006), as a quantity used to
3), with the Globcolour merged reflectances and the empirical algorithm.

http://www.globcolour.info
image of Fig.�10


Table A1
Summary of the wavelengths and F0 λð Þ used to calculate Rrs from the standard
treatment output Lwn.

λ 443 490 555 670

F0 λð ÞMERIS 187.76098 192.93254 180.04556 153.09105
F0 λð ÞMODIS 188.76 194.18 187.00 152.44
F0 λð ÞSeaWiFS 188.76 193.38 183.76 151.22
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monitor the habitats for instance. It is also a parameter that should
be monitored in the European context, with the implementation of
the EU Water Framework Directive. Ocean transparency is also used
in international programs, such as Helcom, dedicated to the
Baltic Sea (see http://www.helcom.fi/environment2/ifs/archive/
ifs2007/secchi/en_GB/secchi/).
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Appendix A. Details of the implementation of the equations of the
QAA (Quasi-Analytical Algorithm), developed by Lee et al. (2002,
2005a,b), IOCCG, (2006)

The QAA has initially been proposed by Lee et al.(2002) and
further refined by Lee et al.(2005a), and by Lee et al.(2005b) and also
in the IOCCG report on the validation of algorithms developed for
optically complex waters (IOCCG, 2006). Since this algorithm has
been slightly evolving with time, we recall here all the equations we
used in the present paper. The calculations with QAA require that a
reference wavelength is chosen. The wavelengths 555 and 640 are
recommended by Lee et al.(2002) and to distinguish between
calculations made with 555 (640) as the reference wavelength, we
will note QAA-555 (respectively 640) and we will also write the
reference wavelength as an index in the notation of the physical
quantities.

The output of the standard processing scheme, in the Globcolour
project, is the fully normalized water-leaving radiance Lwn at the
wavelengths available for each of the three sensors (MERIS, MODIS
and SeaWiFS), as initially introduced by Gordon and Clark (1981). To
convert these radiances into above-surface remotely-sensed reflec-
tances Rrs (above water), the following equation is used (Morel &
Mueller, 2002):

Rrs λ;θs;θv;ΔΦð Þ = Lwn λ;θs;θv;ΔΦð Þ
F0 λð Þ : ðA1Þ

In Eq. (A1), Lwn (λ, θs, θv, ΔΦ) is the normalized water-leaving
radiance (in W m−2 nm−1 sr−1), F0 λð Þis the solar irradiance at the
top of the atmosphere at the mean Sun–Earth distance (in
Wm−2 nm−1) and Rrs is in sr−1, (defined in Morel & Mueller,
2002). In this equation, λ stands for the wavelength (in nm), θs, θv,ΔΦ
are respectively the solar zenith angle, the viewing zenith angle and
the azimuth difference between the sun and viewing directions (all
three in °).

For MERIS, MODIS and SeaWiFS respectively, the wavelengths and
F0 λð Þ used are summarized in Table A1.

The quantities at the heart of the QAA are the in-water remotely-
sensed reflectances rrs also in sr−1. The conversion between Rrs and rrs
is performed following Eq. (A2) (Lee et al., 2002, 2005b) for the four
wavelengths 440, 490, 555 and 670.

rrs λð Þ = Rrs λð Þ
0:52 + 1:7Rrs λð Þ ðA2Þ

The quantities of interest for us are ultimately a(490) and bb(490)
and a number of intermediate quantities are calculated with Eqs. (A3)
to (A9) (summary of equations in Lee et al., 2002 or Lee et al., 2005b).
In the following equations, a is the absorption coefficient (in m−1), bb
the backscattering coefficient (in m−1), (with bbw for water and bbp
for particles), η is a dimensionless coefficient describing the spectral
variations of the particulate backscattering and ν is also a dimen-
sionless coefficient.

ν = ln
rrs 440ð Þ
rrs 555ð Þ
� 	

ðA3Þ

(Lee et al., 2005b)

a 440ð Þi = exp −1:8−1:4ν + 0:2ν2
� �

ðA4Þ

(Lee et al., 2005b)

a 555ð Þ = 0:0596 + 0:2 a 440ð Þi−0:01
� � ðA5Þ

(Lee et al., 2005b)

u λð Þ =
−0:0895þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:08952 + 4 × 0:1247rrs λð Þ

q
2 × 0:1247

ðA6Þ

(Lee et al., 2005b)

bbp λð Þ¼ �bbw λð Þþ a λð Þu λð Þ
1�u λð Þ ðA7Þ

(Lee et al., 2002)

η¼ 2:2 1� 1:2exp �0:9
rrs 440ð Þ
rrs 555ð Þ

� 	� 	
ðA8Þ

(Lee et al., 2005b)

bb λð Þ¼bbw λð Þþbbp 555ð Þ 555
λ

� 	η
ðA9Þ

(Lee et al., 2002, 2005b)

First, the application of QAA-555 is done, with 555 nm as the
reference wavelength, and allows to estimate a(555)[555], bbp
(555)[555], bbp(490)[555], bbp(440)[555], a(490)[555], a(440)[555], using
the needed u(λ).
Second, the application of QAA-640 IOCCG, 2006 and Lee et al.
(2002) requires the calculation of a (640), according to Eqs. (A10) and
(A11).

Rrs 640ð Þ = 0:01Rrs 555ð Þ + 1:4Rrs 670ð Þ−0:0005
Rrs 670ð Þ
Rrs 490ð Þ ðA10Þ

http://www.helcom.fi/environment2/ifs/archive/
http://www.helcom.fi/environment2/ifs/archive/
http://dx.doi.org/10.1029/2004JC002275
http://dx.doi.org/10.1029/2004JC002573
http://dx.doi.org/10.1029/2004JC002573
http://dx.doi.org/10.1029/2004JC002573
http://dx.doi.org/10.1029/2004JC002573
http://dx.doi.org/10.1029/2004JC002573
http://dx.doi.org/10.1029/2004JC002573
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(IOCCG, 2006)

a 640ð Þ = 0:31 + 0:07
rrs 640ð Þ
rrs 440ð Þ
� 	1:1

ðA11Þ

(IOCCG, 2006 and Lee et al., 2002)
The knowledge of a(640) allows to calculate bbp(640)[640], bbp

(490)[640], and a(490)[640], using the intermediate u(λ).
Third, the optimal estimated value for a(490) and bb(490) is

obtainedwith a linear combination of a(490)[555] and a(490)[640] for a
(490) andwith a linear combination of bbp(490)[555] and bbp(490)[640]

for bbp(490), see Eqs. (A12) and (A13) (IOCCG, 2006).

a 490ð Þ = a 490ð Þ 555½ � for a 440ð Þ 555½ �
b0:3

a 490ð Þ = 1− a 440ð Þ 555½ �−0:3
0:2

 !
a 490ð Þ 555½ �

+
a 440ð Þ 555½ �−0:3

0:2
a 490ð Þ 640½ �for 0:3≤a 440ð Þ 555½ �≤0:5

a 490ð Þ = a 490ð Þ 640½ �for a 440ð Þ 555½ �
N 0:5

ðA12Þ

bbp 490ð Þ = bbp 490ð Þ 555½ � for a 440ð Þ 555½ �b0:3

bbp 490ð Þ = 1− a 440ð Þ 555½ �−0:3
0:2

 !
bbp 490ð Þ 555½ �

+
a 440ð Þ 555½ �−0:3

0:2
bbp 490ð Þ 640½ �for 0:3≤a 440ð Þ 555½ �≤0:5

bbp 490ð Þ = bbp 490ð Þ 640½ �for a 440ð Þ 555½ �
N 0:5

ðA13Þ

To conclude this paragraph, it is possible to estimate a(490) and
bb(490) from the value of four remotely sensed reflectances at 440,
490, 555 and 670 nm,with theQAAmethod. In practical implementations,
whenever negative values occurred, whether they were given
(radiances) or calculated (intermediate step), the corresponding
pixel was discarded.

Appendix B. Adaptation of the (Doron et al., 2007) semi-analytical
algorithm using the wavebands 490 and 560 nm

Rationale for using the 560 nm band instead of the 709 nm band

The algorithms to estimate the ocean transparency developed by
Doron et al.(2007) require as an input the irradiance reflectances at two
wavelengths, 490 and 709 nm. Because the latter wavelength is not
available on the MODIS and SeaWiFS sensors and because the MERIS
reflectances presented generally a low signal-to-noise ratio at 709 nm
(especially in oceanic waters), we considered the possibility of using as
an alternative input the reflectance at 560 nm. A critical assumption
made byDoron et al.(2007) in the development of their algorithms,was
about the dominance of the pure water absorption at 709 nm. This
dominance does not hold at 560 nm, but the choice of the 560-nm band
is justified by the trough generally observed in the phytoplankton
absorption spectrum (for instance, in the absence of some specific
pigments, such as the phycoerythrin). The two other optically
significant substances, the non-algal particles (NAP) and the colored
dissolved organic matter (CDOM) have an absorption spectrum
decreasing from the blue to the red wavelengths (Bricaud et al., 1981;
Roesler & Perry, 1995). Therefore, the variations of the absorption
coefficient at 560 nm of the other substances can be inferred from their
absorption coefficient at 490 nm. It allows obtaining a slightly modified
version of the semi-analytical algorithms (see below for the equations).
Another consideration is the fact thatmost ocean color sensorsmeasure
reflectance at a waveband close to 560 nm.

Despite the relatively small absorption by NAP and CDOM, the
assumption of no absorption but the one of pure water does not hold
at 560 nm. Residual absorption at 560 nm (i.e. total absorption minus
pure water absorption) therefore has to be somehow accounted for in
the algorithm of (Doron et al., 2007). The COASTLOOC data set gathers
bio-optical data in European coastal waters and oceanic waters (Babin
et al., 2003a,b; Doron et al., 2007, see the Material and Methods
section for more details). In the COASTLOOC dataset, the residual
absorptionwas calculated as the sum of the absorption of the NAP, the
pigments and the CDOM measured with the spectrophotometer (see
Babin et al., 2003a). We observed a very tight linear relationship
between the residual absorption coefficient at the two wavelengths
490 and 560 nm, which validates the assumption in Eq. (B1).
Although the absorption coefficients vary over more than three
orders of magnitude, the ratio ares(560)/ares(490) has the average
0.323 with a standard deviation of 0.049 (calculated on 317 values).
Thus we can write Eq. (B1)

ares 560ð Þ = α490−560 ares 490ð Þð Þ ðB1Þ

where α490−560 is a constant (dimensionless). Given that the
backscattering-to-scattering ratio for marine particles, b̃bp λð Þ, also
called the backscattering efficiency, shows very weak spectral
variations between 490 and 560 nm (Whitmire et al., 2007), and
the spectral variations of the particles observed by Babin et al.(2003b)
and Barnard et al.(1998), it is therefore assumed that:

B490−560≡
bbpð490Þ
bbpð560Þ

= 1:003 ðB2Þ

It was long ago shown that the spectral irradiance reflectance just
below the sea surface can be expressed with the following equation
(Gordon et al., 1975):

R λð Þ = f λð Þ bbw λð Þ + bbp λð Þ
aw λð Þ + ares λð Þ ðB3Þ

where λ is the wavelength (nm), bb is the backscattering coefficient
(m−1), a is the absorption coefficient (m−1), and the subscripts p, w
and ares stand for the particles, water and residual absorption (all
elements but the water), respectively (Mobley, 1994).

Using Eq. (B1) to (B3), knowing R(490) and R(560), we have two
linear equations and two unknowns (ares(490) and bbp(490)), which
is a simple system to solve. Finally, it is possible to estimate b̂b 490ð Þ
and âð490Þ from R(490) and R(560), assuming α490− 560 , B490− 560,
f(490), f(560) are known (Eqs. (B4) and (B5)). The values of f at both
wavelengths are taken equal to 0.335 (average from Loisel & Morel,
2001).

b̂b 490ð Þ = bbw 490ð Þ + N
D

with

N = −B490−560bbw 560ð Þ + B490−560
aw 560ð Þ
f 560ð Þ R 560ð Þ

+ α490−560B490−560
f 490ð Þ
f 560ð Þ

R 560ð Þ
R 490ð Þ bbw 490ð Þ

−α490−560B490−560
R 560ð Þ
f 560ð Þ aw 490ð Þ

D = 1−α490−560B490−560
f 490ð Þ
f 560ð Þ

R 560ð Þ
R 490ð Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ðB4Þ

âð490Þ = f ð490Þ b̂bð490Þ
Rð490Þ ðB5Þ

http://dx.doi.org/10.1029/2006JC004007
http://dx.doi.org/10.1029/2006JC004007
http://dx.doi.org/10.1029/2006JC004007
http://dx.doi.org/10.1029/2006JC004007
http://dx.doi.org/10.1029/2001JC000882
http://dx.doi.org/10.1029/2001JC000882
http://dx.doi.org/10.1029/2001JC000882
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Appendix C. Equations used to calculate the statistical quantities

To estimate with the higher precision the accuracy of the retrieval
of the Secchi depth with each satellite dataset and algorithm, some
statistical quantities are systematically calculated for each couple of
one algorithm (QAA, SA and EMP) and one dataset (MERIS, MODIS
and SeaWiFS). They are gathered in Table 4 and their calculation is
detailed hereafter.

R2 =

∑
N

i=1
xi−xð Þ yi−yð Þ

" #2

∑
N

i=1
xi−xð Þ2 ∑

N

i=1
yi−yð Þ2

ðC1Þ

Bias =
1
N

∑
N

i=1
yi−xið Þ ðC2Þ

RMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

i=1
yi−xið Þ2

s
ðC3Þ

mean ratio =
1
N

∑
N

i=1

yi
xi

ðC4Þ

mean percentage difference =
100
N

∑
N

i=1

yi−xij j
xi

ðC5Þ

median percentage difference = 100median of
yi−xij j
xi

� 	
i=1;N

ðC6Þ

In the previous equation, x is the in situ measurement vector and y
is the satellite measurement vector (for a given satellite and a given
algorithm). In addition, the range of the in situ and satellite
measurements are given (minimum and maximum).

An integrated quantity is the equation of the linear regression
between the in situ and satellite Secchi depth measurements. Since
both quantities are measurements and none is a controlled variable, it
is necessary to estimate a type II regression to compare one quantity
to the other. A paper by (Isobe et al., 1990) describes comprehensively
a few methods to estimate this type II regression and concluded that
the OLS (Ordinary Least Square) bisector is the most robust method,
when there is uncertainty in both quantities. In addition, this method
allows at the same time to have the standard deviation on both the
Type II slope and intercept (see Table 5 for the numerical results).

y = B×+ A ðC7Þ

in which B is the slope of the type II regression and A is the intercept of
the type II regression.

Sxx¼ ∑
N

i=1
xi−xð Þ2 ðC8Þ

SYY¼ ∑
N

i=1
yi−yð Þ2 ðC9Þ

SXY = ∑
N

i=1
xi−xð Þ ∑

N

i=1
yi−yð Þ ðC10Þ

B 1ð Þ = SXY = SXX ðC11Þ

B 2ð Þ = SYY = SXY ðC12Þ

B 3ð Þ = B 1ð ÞB 2ð Þ−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + B2 1ð Þ� �

1 + B2 2ð Þ� �q
B 1ð Þ + B 2ð Þ ðC13Þ
A ið Þ = y−B ið Þx ðC14Þ

GAM 1ð Þ = B 3ð Þ
B 1ð Þ + B 2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + B2 1ð Þ� �

1 + B2 2ð Þ� �q
ðC15Þ

GAM 2ð Þ = B 4ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 1ð Þ + B 1ð ÞB 2ð Þ−1ð Þ2� �q ðC16Þ

x̂ = x−x ðC17Þ

ŷ = y−y ðC18Þ

SUM 1ð Þ = ∑
N

i=1
x̂ ŷ−B 1ð Þx̂
� �� �2 ðC19Þ

SUM 2ð Þ = ∑
N

i=1
ŷ ŷ−B 2ð Þx̂
� �� �2 ðC20Þ

SUM 3ð Þ = ∑
N

i=1
x̂ŷ ŷ−B 1ð Þx̂
� �

ŷ−B 2ð Þx̂
� �

ðC21Þ

COV =
SUM 3ð Þ
B 1ð ÞS2XX

ðC22Þ

SIGB 1ð Þ = SUM 1ð Þ
S2XX

ðC23Þ

SIGB 2ð Þ = SUM 2ð Þ
S2XY

ðC24Þ

SIGB 3ð Þ = GAM2 1ð Þ
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� �2
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+ 2 1 + B2 1ð Þ
� �

1 + B2 2ð Þ
� �

COV + 1 + B2 1ð Þ
� �2

SIGB 2ð Þ
!

ðC25Þ

SIGA 1ð Þ = ∑
N

i=1
ŷ−B 1ð Þx̂
� �

1−Nxx̂
SXX

 !" #2
ðC26Þ

SIGA 2ð Þ = ∑
N

i=1
ŷ−B 2ð Þx̂
� �

1−Nxŷ
SXY

 !" #2
ðC27Þ

SIGA 3ð Þ = ∑
N

i=1

" 
x̂ ŷ−B 1ð Þx̂
� �1 + B2 2ð Þ

SXX

+ ŷ ŷ−B 2ð Þx̂
� �1 + B2 1ð Þ

SXY

!
NxGAM 1ð Þ−ŷ + B 3ð Þx̂

#2

ðC28Þ

The OLS bisector slope and intercept are respectively B(3) and A
(3) and they are provided in Table 5. The confidence interval for B is
SIGB(3) and the confidence interval for A is SIGA(3).

To better describe the bias par class of values, we calculated the
average by class of Secchi depth values (in situ and satellite). Since
again, there is uncertainty in both quantities, we use the Type II
regression line to define the class. The points are gathered in bins
defined perpendicularly to the type II regression line. For each bin, the
average of the two quantities (ZSD in situ and satellite) is calculated
and both their standard deviation. We then plotted this lineplot on
top of the 1:1 line, and the Type II regression line.
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