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Abstract: Currently, observations from low-Earth orbit (LEO) ocean color sensors represent one of 

the most used tools to study surface optical and biogeochemical properties of the ocean. LEO 

observations are available at daily temporal resolution, and are often combined into weekly, 

monthly, seasonal, and annual averages in order to obtain sufficient spatial coverage. Indeed, daily 

satellite maps of the main oceanic variables (e.g., surface phytoplankton chlorophyll-a) generally 

have many data gaps, mainly due to clouds, which can be filled using either Optimal Interpolation 

or the Empirical Orthogonal Functions approach. Such interpolations, however, may introduce 

large uncertainties in the final product. Here, our goal is to quantify the potential benefits of having 

high-temporal resolution observations from a geostationary (GEO) ocean color sensor to reduce 

interpolation errors in the reconstructed hourly and daily chlorophyll-a products. To this aim, we 

used modeled chlorophyll-a fields from the Copernicus Marine Environment Monitoring Service’s 

(CMEMS) Baltic Monitoring and Forecasting Centre (BAL MFC) and satellite cloud observations 

from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor (on board the 

geostationary satellite METEOSAT). The sampling of a GEO was thus simulated by combining the 

hourly chlorophyll fields and clouds masks, then hourly and daily chlorophyll-a products were 

generated after interpolation from neighboring valid data using the Multi-Channel Singular 

Spectral Analysis (M-SSA). Two cases are discussed: (i) A reconstruction based on the typical 

sampling of a LEO and, (ii) a simulation of a GEO sampling with hourly observations. The results 

show that the root mean square and interpolation bias errors are significantly reduced using hourly 

observations. 
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1. Introduction 

Currently, accurate knowledge of biogeochemical parameters is extremely important for many 

marine environmental applications. Indeed, these variables are generally used to describe the 
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evolution of marine ecosystems in relation to climate change [1,2]. An essential parameter, widely 

used to estimate ocean productivity, is chlorophyll-a concentration (Chl). A variety of methods 

allow the in situ determination of Chl with optical sensors deployed on autonomous platforms such 

as Biogeochemical (BGC)-Argo floats [3,4] and fixed moorings (e.g., BOUSSOLE) [5,6], or through 

laboratory analysis after water sample collection during oceanographic cruises (e.g., 

High-Performance Liquid Chromatography, HPLC, analysis) [7]. None of these approaches ensure 

global and synoptic coverage, and often the duration of measurements is limited in time. Today, 

satellite Chl data are mainly available at a daily scale from low-Earth orbit (LEO) sensors, whereas 

the most widely used products are at weekly, monthly, seasonal, and annual resolutions. The daily 

Chl, when available, is derived from a limited number of satellite passes that depend on latitude, 

and can be affected by the presence of clouds. Missing data in daily Chl can be reconstructed with 

statistical methods such as optimal interpolation or Empirical Orthogonal Functions (EOFs) [8]. 

Recently it has been demonstrated, either in coastal or open ocean waters, how the diel variability of 

bio-optical properties is a fundamental time scale to be evaluated and studied, in the context of 

ocean productivity [9–18]. However, any kind of investigation on diurnal variability of bio-optical 

parameters remains out of reach of LEO ocean color data due to the insufficient revisit capability 

[19]. The situation can be improved by observing the Earth from a geostationary (GEO) orbit, thus 

providing high revisit capabilities, and a chance to remedy the chronic under-sampling of the ocean. 

In combination with existing and planned LEO satellite missions (e.g., the Visible Infrared Imaging 

Radiometer Suite (VIIRS) on the Suomi National Polar-orbing Partnership (SNPP) and NOAA-20, 

the Ocean and Land Colour Instrument (OLCI) on the Sentinel-3A and Sentinel-3B), which would 

ensure, simultaneously, a continuous assessment of ocean color at regional scales and would lead to 

a new range of scientific questions to be addressed and new applications to be developed, in 

particular for coastal zones (i.e., interaction of tides and productivity at diurnal scale). In general, 

there are many advantages to a GEO orbit for ocean color studies: (i) Better temporal coverage; (ii) 

capability to dramatically improve spatial coverage, with a higher probability to have at least one 

observation of good quality per day in many areas (this is fundamental for all operational 

applications, from data assimilation into coupled biological-physical three-dimensional (3-D) 

models to services in coastal zones); (iii) the possibility to follow episodic events at the scale of hours 

(e.g., red tides, sediment transport, river outflows); (iv) improvement of the match between the 

temporal scales of satellite observations and those of models. Other potential applications include 

examining the daily cycle of ocean properties (e.g., the diel cycle of phytoplankton Chl and biomass, 

particulate pool, optical properties), reducing the effects of clouds on ocean-color derived products, 

and improving observations of the effects of planetary waves. At a minimum, data processing for 

individual pixels may benefit from knowledge of marine or atmospheric parameters estimated from 

data acquired in the previously obtained image, now only tens of minutes away [20]. The benefits of 

a GEO orbit for ocean studies has been already demonstrated in the case of Sea Surface Temperature 

(SST) that, currently, is routinely retrieved at hourly time resolution [21–25]. At present, the 

operational GEO ocean color observations are solely provided by the Geostationary Ocean Color 

Imager (GOCI). With its six visible bands centered at the wavelengths of 412, 443, 490, 555, 660, and 

680 nm and two near-infrared (NIR) bands at wavelengths of 745 and 865 nm, GOCI can monitor the 

marine environment and provide a variety of ocean optical, biological, and biogeochemical property 

products for an area of about 2500 × 2500 km2 around the Korean Peninsula [26–31]. 

In this paper, our goal is to quantify the potential benefits of having hourly and daytime 

observations from a GEO ocean color sensor to assess daily maps of Chl. To this aim, we have 

compared initial and reconstructed (i.e., interpolating data voids) Chl fields at hourly and daily 

temporal scales. The initial hourly Chl fields were obtained from numerical simulations using a 

three-dimensional coupled physical-biogeochemical model. The reconstructed fields are the initial 

fields that were: (i) Degraded by applying hourly cloud masks obtained from a GEO meteorological 

satellite and; (ii) reconstructed by filling the gaps using the M-SSA statistical interpolation method. 

A similar approach has been used to simulate observations by a LEO sensor. As expected, the results 

show a strong increase of spatial–temporal coverage using a GEO instead of a LEO sensor, enabling 
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the possibility to retrieve the diel Chl evolution. In addition, the bias and root mean square (RMS) 

error of reconstructed Chl fields at hourly temporal scale were limited, demonstrating the accuracy 

of the M-SSA technique for interpolation. This study provides a quantitative analysis of the potential 

benefits of a GEO sensor to increase the spatial and temporal coverages with respect to a LEO sensor. 

2. Materials and Methods 

The approach developed here (the flowchart is illustrated in Figure 1) uses hourly Chl fields 

generated by numerical simulations and actual cloud distributions derived from the Spinning 

Enhanced Visible and Infrared Imager (SEVIRI) data. The area of study is located in the Baltic Sea 

(approximately 11° E to 24° E and 54° N to 60° N, Figure 2), for which modeled hourly Chl maps are 

distributed by the Copernicus Marine Environment Monitoring Service’s (CMEMS) Baltic 

Monitoring and Forecasting Centre (BAL MFC). SEVIRI data were used to create hourly cloud 

masks to be overlapped with the simulated Chl distributions to mimic observations from GEO and 

LEO sensors. Cloudy grid points were then interpolated using Multi-Channel Singular Spectral 

Analysis (M-SSA) [32,33] and interpolation errors were estimated comparing original modeled data 

masked using SEVIRI clouds with interpolated values in cases of hourly and daily fields. One could 

argue that the Baltic Sea is not optimally observed by a GEO sensor (because at these latitudes, the 

sun’s zenith angle would be very large and, for the most part, the view angle is greater compared to 

the tropical area). This issue is not critical because the Baltic Sea is used here as a case study. The 

main point is the use of realistic Chl distribution and hourly dynamics, provided by the model, and 

real cloud distributions, provided by SEVIRI. 

 

Figure 1. Flowchart diagram of the method developed in this paper. Orange represents dataset 

preparation, blue represents the processing of data, and green represents the outputs and statistical 

analyses. 
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Figure 2. Example chlorophyll-a concentration (Chl) maps: (a) As obtained from the HBM HBO 

model for the 1 May 2016 at 12:00 local time; and (b) after the application of cloud masks (in white) 

by SEVIRI imager at the same hour. 

A more detailed description of the different steps of the work is given below: 

1. Data preparation: 

o Hourly surface Chl data of the biogeochemical model were extracted together with the 

hourly SEVIRI cloud masks. 

o The Chl hourly fields were re-mapped on the SEVIRI observation grid. 

o The hourly cloud masks were then overlaid on the hourly surface Chl fields. 

2. Processing: 

o Simulation of a GEO sensor using the solar zenith angle criteria (see Section 2.3). 

o Simulation of a LEO ocean color sensor, using the expected sampling time of the 

Sentinel-3A satellite over the study area. For simplicity, we have provided an 

over-sampling of a real LEO observations as we have included all the modelled Chl data 

that could potentially be beyond the swath of the sensor. 

o A Gaussian noise was added on each single Chl data. 

3. Outputs and statistics: 

o Reconstruction of hourly and daily Chl gap-free fields using the M-SSA technique [32,33]. 

o Estimation of bias and root mean square error between the reconstructed and original data 

fields. 

2.1. Hourly Chl Simulated Data 

We used one month (May 2016) of hourly simulated Chl data from the HIROMB BOOS 

biogeochemical Model (HBM) from the Copernicus Marine Environment Monitoring Service 

(CMEMS; BALTICSEA_ANALYSIS_FORECAST_BIO_003_007). For more details about the quality 

of the dataset, we refer the reader to the product user manual 

(http://marine.copernicus.eu/documents/PUM/CMEMS-BAL-PUM-003-007.pdf and the quality 

information document 

(http://marine.copernicus.eu/documents/QUID/CMEMS-BAL-QUID-003-007.pdf). 

2.2. Hourly Clouds Data 

Firstly, we applied real clouds to the modeled hourly surface Chl. Such clouds were obtained 

from the SEVIRI sensor on board METEOSAT. Data was downloaded from the IFREMER ftp server 

in GHRSST compliant L3C NetCDF4 format (ftp://eftp.ifremer.fr/cersat-rt/project/osi-saf). In this 

way, the result was similar to what we might get from satellite observations, in the visible band. 

Both datasets (i.e., Chl high frequency observations and clouds) were re-mapped over the SEVIRI 

observations grid. 
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2.3. Simulating GEO and LEO Retrievals 

It was borne in mind that, due to atmospheric correction algorithm limits, only ocean color data 

with a solar zenith angle less than 70° is permitted [34,35] and that 70° is the maximum angle for 

which atmospheric correction algorithms based on plane–parallel radiative transfer calculations 

have been developed. Thus, the interpolation of data voids was conservatively limited to areas 

where the absolute value of the sun’s zenith angle was below 70°, excluding polar night conditions. 

Following this idea, we simulated observations from a GEO ocean color sensor selecting only 

daytime Chl observations (i.e., from approximately 07:00 to 16:00 local time; see Section 2). On the 

other hand, to simulate a single LEO sensor, only hourly fields of 12:00 and 13:00 local time were 

selected. Such time intervals include the typical polar satellite passes (i.e., 2 times per day in the case 

of a two-satellite configuration; see also 

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/coverage; see Section 2). 

Furthermore, a normally distributed noise (i.e., Gaussian noise) was added to each Chl field to 

obtain more realistic simulations of satellite Chl retrievals (see Section 2) [36], and references therein. 

2.4. Multi-Channel Singular Spectral Analysis (M-SSA) 

The M-SSA was used to fill gaps due to cloud coverage in the hourly data of the model-derived 

Chl [32,33]. The M-SSA technique is a non-parametric method relying on data only; i.e., it is not 

based on a priori parametrized family of probability distribution. The method uses both temporal 

and spatial correlation to fill in the missing data and represents a generalization of the [37] spatial 

empirical orthogonal functions-(EOFs) based reconstruction. It is particularly useful for datasets that 

exhibit gaps both in space and time, as is the case of satellite Chl retrievals. Kondrashov and Ghil 

(2006) demonstrated that an increased number of gaps yields the same effect as an increase of the 

noise in the measurements. 

Two different inputs are required to apply M-SSA for field reconstruction: Window-length (W) 

and components (M). Both depend on the characteristics of the time series, and need to be accurately 

defined to avoid any bias in the reconstructed fields. The W represents the length of the sliding 

W-points window used in the M-SSA in order to identify the leading components of the time-series 

[32,33]. Diversely, M is the number of eigen-functions used for signal reconstruction. 

Here, we applied the M-SSA to different cases: (i) Hourly Chl data for diel evolution 

reconstruction; and (ii) mean daytime Chl data for daily field reconstruction. In the first case, the 

M-SSA was applied on hourly GEO simulations using specific W (i.e., W = 48 h) and M components 

(i.e., M = 1 up to 6, that explains more than 95.0% of the variance) following the recommendations 

listed in [32,33]. These settings are compatible with the properties of the time series hereby analyzed, 

taking into account hourly variations. This method was not applied on the LEO simulations because 

of the limited spatial–temporal coverage (i.e., maximum two simulated images per day; see Section 

3.2). In the second case, the M-SSA was used on Chl daily composites (i.e., for a total of 31 maps) for 

both GEO and LEO simulations using specific W and M components (i.e., W = 3 days and M = 1 up to 

3, that explains more than 95.0% of the variance). For more details about the mathematical equations 

and theoretical principles at the base of the M-SSA method, see [32,33]. 

2.5. Statistical Indicators 

The following statistical indicators have been used to quantify the differences between the LEO 

and GEO simulations, after the reconstruction that uses the M-SSA technique at hourly and daily 

scales: 

(i) The number of available simulations for the entire month for each pixel. This index directly 

allows us to quantify the potential observations as captured using a LEO versus GEO ocean 

color sensors; 

(ii) the bias and root mean square error between the original Chl and the gap-free reconstructed 

fields (in both the LEO and GEO cases) for diel Chl reconstructions and mean Chl daytime 

fields: 
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3. Results and Discussion 

3.1. Chl Spatial–Temporal Distribution 

The mean daytime reconstructed Chl field for May 2016 is shown in Figure 3. Chl 

concentrations ranged from 0.1 to 5 mg Chl m−3, consistent with the typical spring to summer values 

for this basin This period is between two distinct Chl maxima that typically occur at the end of April 

and in mid-July [38–41]. Higher values were located mostly at the center of the area of study (greater 

than 2 mg Chl m−3), while the lower Chl concentrations were distributed primarily at the southern 

and western parts of the basin (lower than 2 mg Chl m−3). 

 

Figure 3. The mean daytime Chl field for May 2016 from the biogeochemical model after 

reconstruction of gaps with the Multi-Channel Singular Spectral Analysis (M-SSA) method using 

observations from a geostationary (GEO) simulation. 

3.2. Spatial-Temporal Coverage 

Figure 4 shows the ratio of valid pixels between GEO and LEO simulated daily maps for May 

2016. As expected, the overall ratio was always greater than 1 and ranged between 1.1 (May 11th) 

and 4.1 on May 17th. It means that the GEO supported a better spatial coverage at daily scale. Daily 

maps derived from GEO had, on average, nearly twice the number of valid pixels with respect to 

daily maps in case of LEO (Figure 4). 

Figure 5 shows the number of valid observations using high frequency data for May 2016 

taking into account the real clouds on the area of study. At the eastern part of the basin, the number 

of hourly valid observations by GEO was around 100 per month per pixel, while in the central part 

of the area of study, the number of hourly GEO valid observations for each pixel was larger than 150 

per month. Consequently, in the case of a LEO sensor, the number of observations for each pixel was 

always lower than 62 per month due to the limited number of retrievals (i.e., maximum two per day) 

and the cloud impact. 
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Figure 4. Ratio between the number of valid pixels, in each daily Chl map, derived from GEO and 

low-Earth orbit (LEO) sensors from May 2016. A valid pixel is defined as a pixel where, at least, a 

daily Chl mean value has been estimated. 

 

Figure 5. Number of valid observations in case of GEO (a) and LEO (b) in May 2016. Observations 

with solar zenith angles greater than 70° were excluded. 

3.3. Hourly Reconstruction 

Figure 6 shows the behavior of Chl daytime fields as a function of solar zenith angles. 

Individual Chl values were binned by intervals of solar zenith angles for three different cases: (i) 

Cloudy Chl fields reconstructed via M-SSA; (ii) the original gap-free modelled Chl fields and (iii) the 

modelled Chl with cloudy pixels, not reconstructed. In the first and second case, the number of data 

used to compute the average, in each interval, was the same and equal to the maximum number of 

possible observations in the absence of clouds. In the third case, the data used for the average, in 

each single interval, varied according to the cloud coverage. The correlation between the 

reconstructed and the original model fields was excellent and the differences were limited, as also 

shown in Figure 7. There was a clear Chl increase from 1.9 mg m−3 to 2.65 mg m−3 (maximum value) 

when the solar zenith angle increased from 30° to 45°. Chl remained in a steady state, and then 

decreased again for angles greater than 65°. Observing from space, these results can be achieved 

solely by using a GEO sensor, while, conversely, with the LEO, only a few points can be retrieved 

due to limited temporal coverage, and thus such evolution cannot be detected. Figure 6 also shows 

how less accurate Chl estimates can be obtained using model-gapped fields, i.e., with less 

observations, average computations are limited due to clouds. 
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Figure 6. Chl variability as a function of the solar zenith angle (in degrees) using mean Chl GEO 

retrievals after reconstruction with M-SSA (in yellow) in comparison to the original modeled Chl 

fields (in cyan) and the model Chl with clouds over-imposed (in grey). 

Figure 7 represents the RMS and bias between reconstructed Chl and original modeled hourly 

fields in the case of a GEO sensor. The RMS map shows values greater than 1 mg m−3 at the northern 

border (latitude greater than 58°) of the area of study. The average value is 0.21 mg m−3 (Figure 7a). 

In the central and southern parts of the basin, the RMS was generally lower than ~0.2 mg Chl m−3. 

The bias map shows an efficient estimation of hourly Chl fields after the reconstruction, which 

in a few limited areas reached values of ~0.2 to 0.4 mg Chl m−3. In addition, the northern part of the 

study area shows negative biases larger than −0.2 mg Chl m−3, in correspondence with the highest 

RMS values. However, most of the values ranged from −0.1 to +0.1 mg Chl m−3. Indeed, the bias had 

a positive value close to 0. Concerning the RMS and bias errors, the M-SSA interpolation method 

exhibited the best performance at lower and middle latitudes and open ocean water. 

 

Figure 7. RMS and bias reconstruction errors using the entire time-series of daylight hourly 

observations with respect to the original hourly fields, in a GEO context. 

3.4. Mean Daytime Reconstruction 

Figure 8a,b represent the RMS error between the reconstructed and the original daily Chl fields 

estimated in cases of LEO and GEO sensors, respectively, for the series of 31 Chl maps in May 2016. 

It means that in the first case, (Figure 8a) each of the 31 daily means was derived from a maximum of 

two observations per day; in the second case (Figure 8b), each daily mean was derived from several 

hourly observations. For consistency, the M-SSA was applied on the daily mean, and not on each 

hourly average as in the Section 3.3. The RMS had average values of 0.18 mg Chl m−3 and 0.26 mg Chl 

m−3, respectively for the GEO and LEO sensors. These interpolation errors were half with respect to 
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the RMS evaluated for the current CMEMS satellite Chl product in the Baltic Sea (0.4 to 0.5 mg Chl 

m−3; see Table 7 in 

http://cmems-resources.cls.fr/documents/QUID/CMEMS-OC-QUID-009-048-049.pdf). The order of 

magnitude was, however, similar. In the northern part, the RMS was close to 0.4 mg Chl m−3 for the 

GEO sensor, but still strongly reduced with respect to the LEO sensor (0.7 mg Chl m−3). Thus, the 

main result is that there was a potential decrease of around 50% of the RMS for a GEO sensor in the 

area of highest errors for a LEO sensor. Using more observations and for the daily Chl map, the 

reconstruction enabled us to reproduce the original field with fewer errors: The daily Chl field was 

close to reproducing the model-derived field. Increasing the number of observations can be of great 

value in the case of data assimilation models, especially with regards to the quality of 

biogeochemical daily products. Figure 8c shows how, at higher latitudes, the relative differences 

tended to be larger than 60%, whereas in the southern part of the basin, the relative differences were 

generally between 1% and 10%, reflecting the distribution of clouds. 

 

Figure 8. RMS reconstruction error for daily Chl field in case of LEO (a) and GEO (b) sensors. Panel 

(c) represents the relative differences between RMS of LEO and GEO. 

4. Conclusions and Final Remarks 

The main goal of the study was to quantify the benefits of having high-temporal resolution 

observations from space in order to reduce errors in the reconstructed surface hourly and daily Chl 

fields in the Baltic Sea. To this aim, we have developed a new method to simulate satellite-derived 

observations by combining outputs from a biogeochemical numerical model with real cloud 

distributions. As a first step, we have imitated geostationary satellite measurements using hourly 

data from one biogeochemical model available in the Baltic Sea (i.e., HIROMB BOOS Model from 

Copernicus Marine Environment Monitoring Service). The hourly cloud masks obtained from 

SEVIRI were overlapped to all Chl simulations. Following this, the Multi-Channel Singular Spectral 

Analysis (M-SSA) was applied to fill in the data gaps caused by the cloud distributions, finally 

obtaining gap-free Chl hourly maps. Specifically, two cases are discussed: (i) The simulation of 

observations from one LEO ocean color sensor and (ii) the simulation of observations from one GEO 

satellite sensor with hourly acquisitions for acceptable solar zenith angles. Results show that a GEO 

sensor enabled us to detect the diel Chl evolution (Figures 6) with reduced and acceptable RMS and 
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bias interpolation errors (Figure 7). The LEO sensor cannot do this due to the limited spatial and 

temporal coverages and the limited number of possible observations (Figures 4 and 5). In addition, 

considering the daily Chl field, the RMS and bias decreased significantly using GEO-based 

simulations with respect to a single LEO counterpart. In detail, in some areas (Figure 8a,b), the 

spatial RMS error was reduced by more than 50% using a GEO instead of a LEO sensor. Such 

analysis highlights the importance of high-frequency observations to capture and weigh the 

information that, otherwise, may be lost using only a few ocean color satellite observations per day. 

Future research will focus on: (i) The use of a longer time-series (i.e., from months to years) in order 

to take into account the Chl seasonal and annual cycles in the M-SSA interpolation method; (ii) the 

application of the method on the tropics and mid-latitudes, in order to test the results under higher 

solar altitudes and (iii) the application of the present method to real ocean color geostationary data 

(i.e., GOCI-I) in comparison with a real LEO ocean color satellite dataset over the same study area. 
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