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 Distribution Modelling

1. Introduction
One of the aims of this Atlas is to characterise the spatial distribution of each 
species of interest. In many cases, this information is conveyed by a map of 
the locations where each species was recorded to be present. This gives a 
solid and conservative overview of their distribution, but can be misleading 
in two ways. Firstly, it may not be possible to indicate locations that were 
appropriately sampled but where the species was not found to be present. 
Second, the spatial distribution of sampling effort is typically uneven, and 
so heavily-sampled regions can appear very crowded while scarcely-visited 
or unsurveyed regions appear blank, when the reality might be a more 
homogeneous distribution. When sufficient data are available, modelling can 
help to provide a less biased estimate of the distribution, including inferences 
about the likely distributions in unsurveyed areas (Gutt et al. 2012). Two broad 
types of analysis were carried out: single-species distribution models, and 
multi-species distribution models (i.e. community assemblages).

Several modelling techniques were used, and are described below. 
Although the details differ between techniques, in general these approaches 
all use regression techniques to find relationships between the species 
observations and various physical and chemical environmental variables (see 
Table 1), thereby characterising the dependence of the biological patterns on 
environmental conditions. The validity of such a relationship depends on a 
number of factors and assumptions, including (a) that the same relationship 
between the biota and the environment holds across the entire spatial domain, 
and (b) that the environmental variables — at their available spatial and 
temporal resolution — adequately describe the environmental factors and 
processes that are relevant to the species of interest. Studies such as this on 
large spatial scales are reliant on remote-sensed or modelled environmental 
data, in order to obtain full coverage across the region of interest. In many 
cases this precludes the use of otherwise-useful predictor data (e.g. ship-
based estimates of prey densities from acoustic measurements) in favour of 
synoptic data that might be less directly ecologically relevant to the target 
species (e.g. satellite-derived chlorophyll-a concentration as a proxy for 
primary productivity).

Once fitted, a relationship between environment and biology is typically 
used to make predictions of biological patterns across the entire spatial domain 
of interest, often including geographic areas that have not been surveyed. 
This process involves interpolation (i.e. making predictions for data that are 
within the range of the training data) and may also involve extrapolation (i.e. 
predictions for data that lie outside of the coverage of the training data). 
Interpolation is generally safer than extrapolation, because the latter relies 
on the model to behave sensibly for input data outside of the range used to 
estimate the model parameters. It is important to recognise that interpolation 
and extrapolation can be viewed in either geographic or environmental space. 
Consider a point that geographically lies outside of the spatial bounds of 
the training data, but which has environmental conditions within the range 
encompassed by the training data. Prediction at this point therefore involves 
interpolation in environmental space, but extrapolation in geographic space. 
This can generally be expected to be a reasonable action, provided that 
the assumptions (a and b, above) are met. Extrapolation in environmental 
space may require more care in order to ensure that the predictions are 
reasonable, because it requires not only numerically sensible behaviour from 
the model beyond the training data range, but also requires that the ecological 
implications and assumptions of the model are reasonable for the new regions 
of the environmental domain.

2. Single-species distribution models
Two methods were used for single-species distribution models: boosted 
regression trees (BRT) and MaxEnt. The BRT approach requires both presence 
and absence locations for a species, whereas MaxEnt requires only presence 
locations. Absence is rarely explicitly recorded in the databases from which 
the Atlas data were aggregated. Where possible, absences were inferred from 
related presence data. For example, absences of a specific plankton species 
were inferred from records of similar plankton species, assuming that if the 
species of interest had been caught in those locations, it would have been 
recorded, and that the method used was suitable to catch that species. Where 
absences were not available and could not be inferred, the MaxEnt method 
was used.

For both techniques, the preferred habitat of a single species was 
estimated by regressing the species observations against the environmental 
variables. Modelling was only conducted for species with sufficient data, and 
where the fitted relationships between species presence and environmental 
variables were biologically sensible. For example, few benthic species 

were successfully modelled, because they typically respond to highly local 
environmental factors, proxies for which were not available at the appropriate 
resolution (or with full circumpolar coverage).

2.1. Boosted regression trees
The BRT modelling technique has been shown to be useful for distribution 
modelling of Southern Ocean pelagic zooplankton species (Pinkerton et 
al. 2010). It is an ensemble method, meaning that predictions from a large 
number of relatively simple models (in this case, binary regression trees) are 
combined to give a single overall prediction (Hastie et al. 2001, Friedman 
& Meulman 2003). The manner in which this combining is performed allows 
the BRT to automatically fit complex, non-linear relationships and interactions 
between variables. Only two-way interactions (i.e. interactions between pairs 
of variables) were considered in each simple tree, but by combining many 
of those trees, the overall model accounts for more complex interactions. All 
models were presence-absence (no abundance information was used) and 
so used a binomial distribution with logit link. Critical parameters for these 
models are the learning rate (how much each simple tree contributes to the 
final model) and the number of simple trees in the ensemble. For maximum 
predictive power, the learning rate should very low and the number of 
trees, therefore, very high (Elith et al. 2008); but this has a cost in terms of 
computation speed. A suitable choice of learning rate and number of trees was 
assessed through 10-fold cross validation. The dataset was divided into ten 
subsets, the model was built on nine of them and used to make predictions 
for the remaining one. By comparing those model predictions with the actual 
data, an estimate of the residual deviance (i.e. the model error) was obtained. 
This procedure was repeated ten times, withholding a different subset of data 
each time. The number of trees and learning rate was chosen to minimise 
the residual deviance. We considered models with at least 1000 trees and a 
learning rate smaller than 5x10-4.

The area under the receiver operating characteristic curve (AUC) was 
calculated (Swets 1988) to assess the performance of the models. The AUC 
value is the area under a plot of the fraction of true positives (i.e. the chance 
of correctly identifying presence) against the fraction of false positives (i.e. 
the chance of predicting presence when the species is actually absent). An 
ideal model will predict 100% true positives and 0% false positives, giving 
an AUC value of 1. A model with no discriminatory power will generate equal 
fractions of true and false positives, giving an AUC value of 0.5. The AUC 
value can also be interpreted as the probability that the model will predict a 
higher probability of presence for a randomly chosen presence sample than 
for a randomly chosen absence sample. A model with an AUC value greater 
than 0.7 is considered “useful” (Swets 1988), although of course this depends 
on the particular application.

As well as assessing the overall model fit, the relative influence of each 
predictor variable can be calculated as the weighted average of the number 
of times that the variable appears in the trees that make up the model. 
These values are expressed as percentages and sum to 100% regardless 
of the absolute value of the variance explained: that is, they only quantify a 
relative influence. The shape of the effect of each variable on the presence 
of the species can be visualised through partial dependence plots. A partial 
dependence plot shows the marginal effect of the variable of interest on the 
logit of the probability of presence (“marginal” in this context meaning that the 
effects of the other predictor variables are integrated out). When the value on 
the y-axis is high, the conditions on the x-axis are favourable.

In some instances, the data were biased towards a few specific 
locations, and hence had a high number of records with very similar values 
for the environmental variables. This could happen when specific areas were 
intensively sampled by a specific scientific program, for example, or when a 
single station was recorded multiple times in the database with no formal way 
to identify that it was a single station. In these instances, the data was binned 
to the same resolution as the environmental data used in the model (0.1° 
longitude by 0.1° latitude), and each record was weighted by the inverse of the 
number of records in that bin. 

Predictions were not made outside of the environmental coverage of the 
training data (i.e. no “environmental extrapolation”). These areas appear in 
grey in the maps.

The environmental variables chosen in each model were determined 
by potential biological relevance for the specific organism modelled, with 
regards to potential correlation between available variables. Initial model runs 
determined which variables were of importance, and those with little or no 
importance were removed from the model. 200 bootstraps were carried out 
on both the model and the predictions to determine the confidence interval 
around the environmental effects and predictions.

2.3. Distribution Modelling
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2.2. MaxEnt
Where absences were not available, the MaxEnt method (Phillips et al. 2006, 
Elith et al. 2011) was used for single-species distribution modelling. MaxEnt 
is probably the best-known method for presence-only species distribution 
modelling, although we note that this is an active area of research (see 
e.g. Warton & Shepherd 2010, Royle et al. 2012, Hastie & Fithian 2013). 
MaxEnt differs from a presence-absence model in that it utilises the presence 
locations along with “background” data from across the landscape or region 
of interest. The MaxEnt approach compares the environmental characteristics 
of the presence locations with those of the background samples (i.e. the 
environmental conditions which are potentially available to the species of 
interest). In doing so, it identifies the environmental characteristics that are 
being “selected” by the species in question, relative to those that are available. 
MaxEnt does not give estimates of true probability of presence, but rather 
relative probability of presence, or “habitat suitability”.

MaxEnt assumes by default that the presence samples have been drawn 
randomly from across the species range. Sample selection bias (i.e. where 
the presences have not been sampled uniformly, perhaps because some 
areas have been more intensively surveyed than others) can be problematic 
for presence-only models (Phillips et al. 2009). While in principle it is possible 
to minimise the effects of this bias (e.g. by introducing a matching bias to the 
background samples; Phillips et al. 2009), we did not do so here. The sampling 
bias in high-latitude Southern Ocean species observations is not merely 
spatial, but also has temporal, seasonal, and methodological components. 
Adequately estimating and accounting for these biases is an ongoing area of 
research.

3. Species assemblages
Species assemblages were determined by clustering analyses, either applied 
directly to the observations, using generalised dissimilarity modelling (GDM), 
or applying clustering analyses to the results from single-species predictions. 
Assemblage analyses were carried out for pertinent groupings of species, e.g. 
all euphausiids together.

3.1. Generalised dissimilarity modelling
GDM is a technique that models variation in species turnover between sites 
as a function of environment (Ferrier et al. 2007). This uses a modified 
form of matrix regression to model the relationship between biological and 
environmental distances between pair-wise combinations of sites. Predictions 
can be made for any pair of sites (i.e. not confined to those used in fitting 
the model), provided that values for all environmental predictors are specified 
for both sites. Thus, as with most modelling methods, it is possible to fit the 
model to the available observations and then use that fitted model to make 
predictions across the full region of interest (circumpolar Southern Ocean, in 
this case).
Given a pair of sites, a fitted GDM model will provide a prediction of the 
biological dissimilarity between those two sites. The predicted dissimilarities 
between all pairs of sites in a region can then be used as an input for more 
conventional dissimilarity-based community ecology analysis methods such 
as clustering or multidimensional scaling. Here, our region of interest is 
sufficiently large that we cannot work directly with the all-pairs dissimilarity 
matrix due to computational considerations (the matrix is too large to fit in 
memory on most systems). Instead, we transform the environmental data in 
each point of the grid with the same nonlinear transformation used internally 
by the fitted GDM model (function gdm.transform in the code distributed by 
Ferrier et al.). The Manhattan distance dij between this transformed data for 
a pair of sites i and j is monotonically related to the predicted dissimilarity Dij 
usually computed by GDM (function gdm.predict):Dij = 1— e -dij

Thus, we can obtain similar results by clustering the transformed data 
(using a clustering algorithm with the Manhattan distance) as would be 
obtained by clustering on the basis of the predicted dissimilarities from the 
GDM model. If a hierarchical UPGMA clustering algorithm was used on the 
transformed data, the two sets of results would be identical. However, with 
this transformed data we used the non-hierarchical clustering algorithm 
clara (Kaufman & Rousseeuw 2008), which does not require all pairwise 
dissimilarities and is therefore computationally feasible. Using this method is 
not guaranteed to produce identical results to hierarchical clustering of the 

Parameter Source Description and processing notes
Depth Smith & Sandwell (1997)

http://topex.ucsd.edu/WWW_html/mar_topo.html-
Source data version:  V13.1 (Sep 4, 2010)

Data from satellite altimetry and ship depth soundings, subsampled from original 1-minute to 
0.05-degree resolution and interpolated to 0.1-degree grid using bilinear interpolation.

Slope Derived from Smith & Sandwell V13.1 bathymetry data 
(above).

Bathymetric slope calculated on 0.1-degree gridded depth data (above), using the equation 
by Burrough & McDonell (1998, p. 190). See http://webhelp.esri.com/arcgisdesktop/9.2/index.
cfm?TopicName=How%20Slope%20works.

Geomorphology Mapping based on GEBCO contours, ETOPO2, 
seismic lines

Mapped from bathymetric analysis, with features cross-checked from seismic lines. And  classified at a 
scale of 1: 1–2 million

Distance to shelf break Derived from geomorphic features map. Distance calculated from the coastline to the upper slope as defined in Table 1 of the geomorphic 
features.

Chlorophyll-a summer Feldman & McClain (2010) Near-surface chl-a summer mean from MODIS Aqua. Data span the 2002/03 to 2009/10 austral summer 
seasons. Data interpolated from original 9km resolution to 0.1-degree grid using bilinear interpolation. 

Sea ice Derived from AMSR-E satellite estimates of daily sea ice 
concentration at 6.25km resolution  (Spreen et al. 2008)
http://iup.physik.uni-bremen.de:8084/amsredata/asi_
daygrid_swath/l1a/s6250/ 

Concentration data from 1-Jan-2003 to 31-Dec-2009 used. The fraction of time each pixel was covered 
by sea ice of at least 85% concentration was calculated for each pixel in the original (polar stereograph-
ic) grid. Data then regridded to 0.1-degree grid using triangle-based linear interpolation.

Southern Ocean fronts Sokolov & Rintoul (2009) Data provided as mean positions (line features) from satellite altimetry. Distance to the polar front also 
calculated, using the minimum distance from each pixel in the 0.1–degree grid to the middle branch of 
the polar front.

Distance to nearest seabird 
breeding colony

Calculated from the Inventory of Antarctic seabird 
breeding sites, collated by Eric Woehler 
http://data.aad.gov.au/aadc/biodiversity/display_collec-
tion.cfm?collection_id=61

Salinity (winter) 0/50/200/500m World Ocean Atlas 2009 (Antonov et al. 2010) Data regridded to 0.1-degree grid using bilinear interpolation

Salinity (summer) 0/50/200/500m See salinity (winter)

NOx (winter) 0/50/200/500 m World Ocean Atlas 2009 (Garcia et al. 2010b) See salinity (winter)

NOx (summer) 0/50/200/500m See NOx (winter)

Oxygen (winter) 0/50/200/500m World Ocean Atlas 2009 (Garcia et al. 2010a) See salinity (winter)

Oxygen (summer) 0/50/200/500m See oxygen (winter)

Temperature (winter) 
0/50/200/500m

World Ocean Atlas 2009 (Locarnini et al. 2010) See salinity (winter)

Temperature (summer) 
0/50/200/500m

See temperature (winter)

Sea surface temperature (SST) 
summer

Feldman & McClain (2010) Data from MODIS Aqua. Climatology spans the 2002/03 to 2009/10 austral summer seasons. Data 
interpolated from original 9km resolution to 0.1-degree grid using bilinear interpolation.

Seafloor temperature Clarke et al. (2009) Original data derived from World Ocean Atlas 2005 data and provided on a 1-degree grid. Isolated 
missing pixels (i.e. single pixels of missing data with no surrounding missing pixels) were filled using 
bilinear interpolation, and then data were regridded from 0.1-degree grid using nearest neighbour 
interpolation.

Last glacial ice sheet maximum 
grounding line

Modified from Anderson et al. (2002) The location of the LGM grounding line was based on the work of Anderson et al. (2002), but modified 
to account for the position of the shelf break as identified on the geomorphic map

Granulometry McCoy (1991) Derived from sediment types.

Biogenic component in sediment See Granulometry Siliceous vs calcareous.

Table 1  List of abiotic layers selected for establishing the prediction maps.

http://topex.ucsd.edu/WWW_html/mar_topo.html
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=How%20Slope%20works
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=How%20Slope%20works
http://iup.physik.uni-bremen.de:8084/amsredata/asi_daygrid_swath/l1a/s6250/
http://iup.physik.uni-bremen.de:8084/amsredata/asi_daygrid_swath/l1a/s6250/
http://data.aad.gov.au/aadc/biodiversity/display_collection.cfm?collection_id=61
http://data.aad.gov.au/aadc/biodiversity/display_collection.cfm?collection_id=61


Biogeographic Atlas of the Southern Ocean 29

predicted dissimilarities from the fitted GDM; however, in practice we have 
found the results to be sufficiently similar for applied use. 

The optimum number of clusters (between 3 and 10) was computed 
automatically by maximising average bandwidth. The data were binned at 
the same 0.1-degree resolution as the environmental data (see Table 1). Any 
species recorded within each bin at least once was assumed present in that 
bin. 

3.2. Clustering of single-species distributions
The computational demands of GDM limit its use to relatively small data sets 
(usually 2500 sites or less). For species groups with large amounts of data, 
and where most important individual species were modelled using BRT (e.g. 
euphausiids), the results from BRT were classified using a two step clustering 
method: a non-hierarchical cluster using clara, as above, to 200 clusters, 
followed by a hierarchical clustering to 12 groups. This method is inspired 
from the gradient forest methodology (Leaper et al. 2011, Ellis et al. 2012), but 
controls and optimises the prediction of each species individually, and applies 
no weight between the different species before clustering. Direct hierarchical 
clustering was not suitable because of its high computational demands.
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THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN
Scope
Biogeographic information is of fundamental importance for discovering marine biodiversity hotspots, detecting and understanding impacts of environmental changes, predicting future 
distributions, monitoring biodiversity, or supporting conservation and sustainable management strategies.
The recent extensive exploration and assessment of biodiversity by the Census of Antarctic Marine Life (CAML), and the intense compilation and validation efforts of Southern Ocean 
biogeographic data by the SCAR Marine Biodiversity Information Network (SCAR-MarBIN / OBIS) provided a unique opportunity to assess and synthesise the current knowledge on Southern 
Ocean biogeography.
The scope of the Biogeographic Atlas of the Southern Ocean is to present a concise synopsis of the present state of knowledge of the distributional patterns of the major benthic and pelagic 
taxa and of the key communities, in the light of biotic and abiotic factors operating within an evolutionary framework. Each chapter has been written by the most pertinent experts in their 
field, relying on vastly improved occurrence datasets from recent decades, as well as on new insights provided by molecular and phylogeographic approaches, and new methods of analysis, 
visualisation, modelling and prediction of biogeographic distributions.
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The SCAR Marine Biodiversity Information Network (SCAR-MarBIN)
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