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ABSTRACT: In dilution experiments, filtered seawater is used to create a gradient of grazing pres-
sure on phytoplankton. Microzooplankton grazing is estimated by examining phytoplankton growth
within the gradient. However, the dilution series also represents a resource gradient for microzoo-
plankton. Here we report the effects of dilution on grazers. In 2 standard dilution experiments, using
communities from the eutrophic (chlorophyll a = 12 to 15 pg I'!) Rhode River Estuary, we examined
the effects of dilution on different groups of microzooplankters: rotifers, tintinnid ciliates, oligotrich
ciliates, predacious ciliates, and Mesodinium rubrum. Apparent growth rates of tintinnids and oligo-
trichs varied with prey concentration, decreasing with the dilution factor from about +0.5 d-! in undi-
luted whole water to about —1 d™! in the 5% whole water, closely resembling numerical response
curves. Among tintinnids, there was an increase in the relative abundance of larger tintinnids in the
time 24 h samples of dilute treatments compared to the less dilute treatments. No consistent dilution
effect was shown by rotifers or predacious ciliates. The growth rates of the photosynthetic ciliate M,
rubrum increased with dilution, resembling the typical pattern of chlorophyll a and autotrophic
nanoplankton. Grazer growth in undiluted waters and grazer mortality in dilute water may be com-
mon and result in uncertainty in measured grazing rates. We urge that grazers be examined in graz-
ing experiments not only to assess possible artifacts in grazing rate estimates, but also to provide
information, beyond a simple grazing rate, on the grazer populations.
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INTRODUCTION

In 1982, Landry & Hassett introduced a dilution
approach to the measurement of herbivory by micro-
zooplankton in natural seawater communities (Landry
& Hassett 1982). Dilution reduces encounter rates
between phytoplankton and their microzooplankton
grazers. The method consists of amending natural
assemblages of phytoplankton and grazers with vary-
ing proportions of filtered seawater creating a dilution
series, and then estimating the grazing rate as the
increase in apparent phytoplankton growth rate with
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the dilution factor. Specifically, the microzooplankton
grazing rate is estimated as the slope of a regression of
apparent phytoplankton growth in the various dilu-
tions against dilution factor. The growth rate of the
phytoplankton is estimated as the apparent growth
rate extrapolated to 100% dilution (growth in the
absence of grazers). The approach relies on relatively
few assumptions: (1) phytoplankton growth rate is lim-
ited neither by nutrients nor by density dependence,
(2) phytoplankton growth is exponential, and (3) con-
sumption rates by microzooplankton are linear with
respect to phytoplankton concentration.

The method requires little manipulation of natural
communities other than dilution and the addition of
nutrients when these are in short supply (to satisfy
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Fig. 1. Annual number of dilution experiments published from
1992 to 1999, reported in studies of marine and estuarine sys-
tems, classified by the initial chlorophyll concentration of the
water used (ug 1°!). Note the regular increases in the number
of experiments reported and the large proportion conducted
in waters with low chlorophyll concentrations (€1 ng chl 1),
ND: no data or chlorophyll concentrations were not clearly
relatable to individual experiments. Numbers of experiments
include those with insignificant or negative grazing rates
when reported. Data from 1992: Evans & Paranjape,
McManus & Ederington-Cantrell, Verity & Vernet. Data from
1993: Burkill et al. b,c, Harrison et al., Landry et al., Verity et
al., Weeks et al. Data from 1994: Kamiyama, Neuer & Cowles.
Data from 1995: Burkill et al., Dagg, Fahnenstiel et al., Gifford
et al., Landry et al. a,b, Sime-Ngando et al., Waterhouse &
Welschmeyer. Data from 1996: Ayukai, Boyd et al., Chavez et
al., Froneman & Perissinotto a,b, Froneman et al. a,b, Galle-
gos et al., Strom & Strom, Verity et al. Data from 1997: Frone-
man & McQuaid, Froneman et al., Gallegos & Jordan a,
Latasa et al., Nejstgaard et al.,, Reckermann & WVeldhuis,
Scharek et al., Tamigneaux et al,, Tsuda & Kawaguchi. Data
from 1998: Ayukai & Miller, Cotano et al., Froneman &
Balarin, James & Hall, Landry et al., Lessard & Murrell, Mur-
rell & Hollibaugh, Ruiz et al., Schiilter. Data from 1999: Brown
et al., Caron & Dennett, Edwards et al., Gaul et al., Johnson et
al., Kuipers & Witte, Lehrter et al., Rivkin et al.

Assumption 1). Given its simplicity, it is not surprising
that the method has become increasingly popular in
recent years, especially in open ocean waters of low
chlorophyll content (Fig. 1). Dilution experiments are
now a standard protocol for the estimation of micro-
zooplankton herbivory (Burkill et al. 1993a, Landry
1993). Taxon- or pigment-specific mortality rates of
phytoplankton have been estimated using the dilution
method and HPLC measurements of pigments (e.g.,
McManus & Ederington-Cantrell 1992, Verity et al.
1993, Fahnenstiel et al. 1995, Waterhouse & Welsch-
meyer 1995, Verity et al. 1996, Latasa et al. 1997). The
analysis of samples using flow cytometry has provided
specific rates of mortality and growth for picoplankters
such as Synechococcus and Prochlorococcus (e.qg.,
Landry et al. 1995a, Reckerman & Veldhuis 1997,
Johnson et al. 1999). The approach has also been

adapted for use in a wide variety of environments
ranging from studies of bactivory in the benthos (Kemp
1994) to use in anoxic waters (Detmer et al. 1993), sea-
ice melt ponds (Wickham & Carstens 1998) and tem-
perate lakes (Elser et al. 1995, Jones & Young 1998).

Despite wide-spread adoption, the method is not
without problems. Publications commonly report in-
stances of uninterpretable results, i.e. plotting appar-
ent phytoplankton growth against dilution factor does
not yield a significant regression (0.05 level). When
this phenomenon is reported, frequencies range from 6
to 66 % of the experiments run (Kamiyama 1994, Gif-
ford et al. 1995, Landry et al. 1995a, Reckermann &
Veldhuis 1997, Lessard & Murrell 1998, Murrell & Hol-
libaugh 1998, Caron & Dennett 1999, Gaul et al. 1999,
Kuipers & Witte 1999). Some of these problematic
results are likely due to the fact that slight slopes, or
low grazing rates, are difficult to detect with regression
analysis using the small 'n' values commonly em-
ployed (8 to 15). Other possibilities concern violation of
the assumptions underpinning dilution assays. As
nutrients are often added or measurable, nonlinear
relationships between phytoplankton mortality rates
and the dilution factor appear the most probable ex-
planation.

Problems which have received particular attention
with regard to the consumption rates of microzoo-
plankton include differences in the per-capita feeding
rate of grazers in the different dilution treatments (Gal-
legos 1989, Evans & Paranjape 1992) and the growth of
grazers in the undiluted samples (Gallegos et al. 1996).
Interestingly, the response of the grazer community to
dilution in terms of apparent growth and mortality,
although recognized as a possible problem (Landry et
al. 1995b), has not been explored in any detail. To our
knowledge, only a single study has provided data on
apparent changes in microzooplankton concentrations;
all non-tintinnid taxa were combined and no consistent
patterns were noted (Gifford 1988).

In this study, we examined the microzooplankton
community in 2 dilution experiments in all the treat-
ments ranging from 100 to 5% whole water. We found
that (1) oligotrich and tintinnid ciliates, which gener-
ally dominate microzooplankton communities, showed
apparent growth rates which varied in proportion to
available nanoplanktonic prey, (2) there were obvious
differences in the species composition of the tintinnid
community, (3) apparent growth of Mesodinium rub-
rum increased with dilution factor, and (4) predacious
ciliates (Didinium, Cyclotrichium) and rotifers (Syn-
chaeta spp.) showed no consistent changes in relation
to dilution. The combined effects of grazer mortality in
dilute treatments and growth in undiluted treatments
confound estimates of grazing rate and the pheno-
menon may be common.
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METHODS

Study site. Dilution experiments were run in the
Rhode River Estuary (38°53'N, 76°32' W), a eutrophic
subestuary of the Chesapeake Bay. Detailed data on
the compositions, concentrations, and seasonal cycles
of nutrients, phytoplankton, and zooplankton have
appeared previously (Dolan & Gallegos 1991, 1992,
Gallegos et al. 1992, 1997, Gallegos & Jordan 1997a,b,
Jordan et al. 1991a,b).

Experimental protocol. A standard dilution experi-
ment protocol, used regularly for several years, was
employed (see Gallegos & Jordan 1997a). Briefly,
duplicate 2 1 polycarbonate bottles were used to incu-
bate whole estuarine water at 5 dilution levels: 100, 80,
40, 20, and 5 % whole water, diluted with GF/E-filtered
water. All whole water aliquots were drawn from a sin-
gle, well-mixed carboy, including samples for initial
concentrations of nutrients, chlorophyll and micro-
rganismal abundances. Nutrient salts (NaNO; and
Na,HPO,) were added to the bottles to yield final con-
centrations of 60 pM NO; and 6 pM PO,. In Expt 1
additional bottles of whole water without nutrients
added were incubated to check for nutrient effects on
grazers. The bottles were incubated in situ at a depth
of 1 m for 24 h, retrieved and returned to the laboratory
for time 24 h (,,) sampling.

Sample analysis. Samples for chlorophyll analysis
were filtered onto GF/F glass fiber filters and, follow-
ing acetone extraction, the concentrations were deter-
mined using a Turner Designs 10-AU fluorometer.
Nutrient analysis methods followed standard protocols
outlined in Jordan et al. (1991a). Sample aliquots of 20
or 40 ml for enumerations of nanoplankton and bacte-
ria were fixed with ice-cold glutaraldehyde (1% final
conc.). Bacteria, and autotrophic and heterotrophic
nanoplankton were counted using an epifluorescence
microscope and DAPI-stained preparations following
standard protocols (e.g., Dolan & Gallegos 1991). For
ciliate enumerations, sample aliquots of 50 ml (Initial,
t24 100, and 80 % whole water) or 500 ml (t,4 samples
for 40, 20, 5% whole water) were fixed with acid
Lugol's (2% final conc). Prior to settling in inverted
microscope sedimentation chambers, the 500 ml sam-
ples were pre-concentrated to 75 ml volumes by first
settling in 500 ml graduated cylinders for 48 to 72 h,
followed by slowly siphoning off the top 425 ml. We
have used this pre-concentration method extensively
and found no significant loss of ciliates (Dolan & Mar-
rasé 1995, Dolan et al. 1999). Single or multiple 10 ml
subsamples, providing raw counts of at least 100 olig-
otrichs and 100 tintinnids, were examined using an
inverted microscope. Parallel samples of whole water
(25 ml) from initial water samples were fixed with glu-
taraldehyde and Lugol's and then examined with an

inverted microscope equipped with epifluorescence
to permit the classification of oligotrich morphotypes,
distinguishable in Lugol's-fixed material, as either
mixotrophic or heterotrophic, based on chlorophyll-
fluorescence visible in glutaraldehyde-fixed indi-
viduals. Ciliates were placed in the categories of:
mixotrophic oligotrichs, heterotrophic oligotrichs, tin-
tinnids, predacious ciliates (Didinium spp., Cyclotri-
chium spp.), Mesodinium rubrum and others (mostly
Balanion spp., Euplotes spp.). For rotifers, samples
ranging from 200 to 400 ml were concentrated to 20 ml
through a 20 pm mesh nitex screen and 2 to 20 ml
aliquots of this concentrate, providing raw counts of at
least 100 rotifers, were settled and examined using an
inverted microscope.

Data analysis. The apparent growth rates in individ-
ual bottles were calculated as In(conc,/concy), where
concy, and conc, are, respectively, the final measured
concentration and the initial concentration, based on
initial whole water concentration and dilution factor.
Regression analysis of apparent growth rates against
‘fraction unfiltered water’ was run using Statview 4.5.
Regression analysis was also used to relate apparent
phytoplankton (as chlorophyll) growth rates to differ-
ent measures of grazing pressure (as opposed to
fraction unfiltered or dilution factor) in the individual
containers. As measures of grazing pressure we con-
sidered: (1) ciliate concentration at t,; as % t, whole
water concentration, and (2) a measure of average
ciliate concentration, following Gallegos et al. (1996),
estimated as the geometric mean predator density
(GMPD) calculated as [tyconc x tyyconc]®®, converted
to % t, ciliate concentration. For these calculations, cil-
iate concentration was considered as total ciliates, with
the exception of Mesodinium rubrum. We recognize
that both apparent growth rates and ciliate concentra-
tions, unlike ‘fraction unfiltered’, cannot be measured
without error, and therefore correlation rather than
regression should be used—we did so only to estimate
potential error in ignoring actual predator concentra-
tions.

We also estimated grazing rates by comparing the 2
extremes of the dilution series. The additional grazing
estimates, which we term ‘100 versus 5 %', were calcu-
lated using data only from the 100 and 5% whole
water treatments, by considering the containers,
respectively, as representing vessels with and without
grazers. A ‘raw 100 versus 5 %' grazing rate, g d™!, was
calculated as the difference between apparent chloro-
phyll growth rates in each container with and without
grazers (average apparent growth rate in the 0.05 dilu-
tion factor containers). An ‘adjusted 100 versus 5%’
rate, corrected for grazer growth during the experi-
ment was also calculated. The correction for grazer
growth consisted of first calculating a per-capita graz-
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ing rate by dividing the 'raw 100 versus 5%’ grazing
rate by the average number of grazers in the contain-
ers (GMPD), and then multiplying the resulting per-
capita rate by the initial concentration of grazers (for
our purposes only ciliates were considered) to obtain a
grazing rate corrected for the growth of grazers in the
containers. Finally, in the second experiment the plot
of phytoplankton apparent growth rate against dilu-
tion factor indicated nonlinear feeding kinetics by the
microzooplankton (Gallegos 1989). For that experi-
ment we also estimated g using Eq. (11) in Gallegos
(1989).

RESULTS

Physical and chemical data for the dilution experi-
ments are given in Table 1. End of experiment nutrient
samples were not taken for Expt 1, but Expt 2 samples
indicated that most of the added nutrients were uti-
lized in all the dilutions (Table 1). Initial and final
organismal concentrations for undiluted samples ap-
pear in Table 2. The comparison of ciliate concen-
trations in bottles with and without added nutrients
(Expt 1) showed no differences (data not shown).

In both Expt 1 (Fig. 2) and Expt 2 (Fig. 3), apparent
growth rates of phytoplankton (based on chlorophyll),

photosynthetic nanoplankton-ANAN, and the photo-
synthetic ciliate Mesodinium rubrum were highest in
dilute waters and decreased with the proportion of
whole water or 'fraction unfiltered'. For chlorophyll
growth rates in Expt 2, this decrease appeared nonlin-
ear with no further decrease above dilution factor =
40% (Fig. 3). In contrast, an opposite trend of growth
rate (increasing with fraction unfiltered) was evident
for tintinnids and heterotrophic oligotrichs. The appar-
ent growth rates of mixotrophic oligotrichs (Expt 1
only), predacious ciliates, heterotrophic nanoplankton
and rotifers varied irregularly. Regression statistics of
the relationships with ‘fraction unfiltered' given in
Table 3 indicated the strongest relationships between
‘fraction unfiltered’, or dilution factor, and growth rates
of oligotrichs and tintinnids. In both experiments, the
overall range of net growth rates was wider for ciliates
than for chlorophyll (Figs. 2 & 3; note change in scale
for chlorophyll plots).

For the dominant taxa of oligotrichs and tintinnids
in each experiment, apparent growth rates plot-
ted against initial nanoplankton prey concentration
(PNAN + ANAN) in the various treatments yielded
numerical response curves with a typical hyperbolic
shape (Fig. 4). Converting nanoplankton concentra-
tions into carbon units by assigning the value of 11 pg
C nanoplankter™! (avgerage biovolume of 55 pm® x

Table 1. Physical and chemical characteristics of waters employed in the dilution experiments. For Expt 2, final (f,4) nutrient con-
centrations are given +SE of the 10 bottles. nd: no data

T (°C) Salinity (%o) NH, (uM) NO; (uM) PO, (nM)
Expt 1: October 10, 1999
Initial 18.6 13.2 9.6 0.5 0.2
t, after adding nutrients 9.6 60 6
toy 17.9 nd nd nd nd
Expt 2: October 19, 1999
Initial 16.4 13.1 4.5 0.3 0.1
t; after adding nutrients 4.5 60 6
to4 16.1 nd 4.8+0.21 28175 0.6 £ 0.08

Table 2. Organismal concentrations in Expts 1 and 2, in undiluted waters at the beginning (t,) and end (t,,4) of the experiments of

chlorophyll a in ug I"* (Chl a), phototrophic nanoplankton x 10~ ml-! (PNAN), heterotrophic nanoplankton x 10-3 mI"! (HNAN),

heterotrophic bacteria x 10°® mI? (Bacteria), total ciliates excluding Mesodinium rubrum ml™! (Ciliates), M. rubrum ml !
(M. rubrum) and rotifers ml™! (Rotifers). Concentrations at t,4 are averages of the duplicate bottles

Chl a PNAN HNAN Bacteria Ciliates M. rubrum Rotifers
Expt 1: October 10, 1999
Whole water £, 14.8 17.9 6.9 6.1 315 53.9 2.0
Whole water £y, 22.0 359 6.2 8.2 43.6 17.9 2.9
Expt 2: October 11, 1999
Whole water ¢, 12.7 53.9 12.5 6.3 304 38.8 2.4
Whole water £y, 19.4 90.3 4.7 4.8 33.3 20.4 2.1
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Fig. 2. Dilution plots from Expt 1. Apparent growth rates increased with dilution factor for chlorophyll, autotrophic nanoplankton

(ANAN), heterotrophic nanoplankton (HNAN), and Mesodinium rubrum. In contrast, the growth rates of tintinnids and het-

erotrophic oligotrichs (Het oligo) declined and no clear effect of dilution was shown by rotifers, mixotrophic oligotrich (Mixo
oligo) or predacious ciliates (Pred. Ciliates). Regression parameters are given in Table 3

0.2 pg C pm™3) indicates threshold prey concentrations
(below which growth = 0) ranging from 20 to 100 ng C
ml~! and saturating prey concentrations (above which
growth rate does not increase) of 100 to 300 ng C mlt,

The examination of t,; samples showed distinct dif-
ferences between dilution treatments in the composi-
tion of tintinnid ciliate communities. There appeared to
be a shift within the tintinnid community in both
experiments, towards an increase in the dominance of
species with larger loricas in the more dilute treat-
ments, reflected in increases in average lorica length of
the tintinnid community (Figs. 5 & 6). In the most dilute
treatments, none of the tintinnid species showed
positive apparent growth, therefore the changes in
tintinnid community composition reflect differential
survival of different species rather than differential
growth.

As a metric of grazing pressure, using the regression
of dilution factor against apparent chlorophyll growth
rates gave higher grazing rate estimates than regres-
sions against ciliate concentrations, either time-aver-
aged or at the end of incubation (Table 4). Specifically,
grazing rate estimates made using time-averaged
(GMPD] ciliate concentrations, appropriate when the
prey concentration is in the linear response range of
the microzooplankton, were 93% of the rates esti-
mated using the dilution factor for Expt 1. Regressions
of end-point ciliate concentrations against apparent
growth rates yielded grazing estimates equal to 81 and
63 % of the dilution factor estimates for Expts 1 and 2,
respectively. Grazing rate estimates based on the dif-
ference between phytoplankton growth in whole
water and 5% whole water, i.e. 'rTaw 100 versus 5%/,
gave rates equivalent to 67 and 103 % of the dilution
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Fig. 3. Dilution plots from Expt 2. Apparent growth rates increased with dilution factor for chlorophyll, autotrophic nanoplankton
(ANAN), and predacious ciliates (Pred. Ciliates). As in Expt 1, the growth rates of tintinnids and heterotrophic oligotrichs
declined and no clear effect of dilution was shown by heterotrophic nanoplankton (HNAN), or Mesodinium rubrum. All oligo-
trichs were grouped in the experiment as mixotrophic forms were not easily distinguished from heterotrophic forms. Regression
parameters are given in Table 3

Table 3. Parameters of regression relationships between dilution (fraction unfiltered) and apparent growth rates of phytoplank-
ton (Chl a), phototrophic nanoplankton (PNAN), heterotrophic nanoplankton (HNAN), all ciliates excluding Mesodinium rubrum
(Total ciliates), all oligotrichs (Oligotrichs), all tintinnids (Tintinnids), Mesodinium rubrum (M. rubrum), predacious ciliates

(Pred. cils) and rotifers (Rotifers). Significant relationships are shown in bold; n = 10 for all analyses

Chl a PNAN HNAN Total ciliates Oligotrichs Tintinnids M. rubrum Pred. cils Rotifers
Expt 1: October 10, 1999
Slope -0.6 -0.4 -0.7 1.3 1.5 1.5 -1.0 -0.4 -0.3
r’ 0.73 0.45 0.41 0.83 0.63 0.87 0.72 0.23 0.20
Probability 0.002 0.033 0.045 0.001 0.007 0.001 0.002 0.166 0.582
Expt 2: October 11, 1999
Slope -0.3 -0.3 -0.3 11 0.9 1.4 -0.5 -0.8 -0.2
r? 0.50 0.33 0.25 0.85 0.65 0.89 0.05 0.47 0.05
Probability 0.023 0.083 0.546 0.001 0.005 0.001 0.145 0.028 0.519
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Fig. 4. Apparent growth rate of numerically dominant olig-

otrichs and tintinnids in the dilution experiments as a function

of initially available nanoplankton prey. (A) Oligotrich growth

rates: in Expt 1 for a 50 pm long conical Strombidium sp.,

in Expt 2 for a spherical 20 ym diameter Strombidium sp.

(B) Growth rates of the tintinnid Tintinnopsis rapa in Expts 1
and 2

factor rates, and the adjusted 100 versus 5 % rates were
67 and 86 % of the dilution factor rates. In contrast,
both the phytoplankton growth rate and microzoo-
plankton grazing rate in Expt 2 were higher when
calculated according to nonlinear feeding kinetics
(Table 4). This appears to result from the formulation of
Eq. (11) of Gallegos (1989), which calculates g for ini-
tial conditions of the experiment, while accounting for
the fact that per-capita grazing declines during the
course of the experiment when feeding is nonlinear
and phytoplankton prey density is increasing (i.e.
there was a positive net growth rate of phytoplankton
in Expt 2, Fig. 3).

DISCUSSION

Our experimental results show that within a dilution
series considerable apparent growth and mortality can

occur among ciliates, and different functional groups
of ciliates display distinct patterns of growth and mor-
tality. Typical grazers of nanoplankton, oligotrichs and
tintinnids, showed rates of growth and mortality which
co-varied with the availability of nanoplankton prey
(e.g., Fig. 4). Clear differences between dilution treat-
ments were evident in the composition of the tintinnid
community at the end of the experiments (Figs. 5 & 6),
likely due to lower mortality rates of larger tintinnids
compared to small species in the dilute treatments.
Predacious ciliates, raptorial feeders on dinoflagellates
and small ciliates (Dolan 1991), exhibited a different
pattern, showing either no clear trend (Fig. 2) or in-
creases in apparent growth rates with dilution (Fig. 3).
As we did not sample all the dilution treatments at
to, we can only describe growth rates as apparent
growth rates. However, at the end of the experiments,
the ciliate community composition certainly differed
between the different dilution treatments, and to the
extent that different ciliate taxa ingest different prey
items, grazing patterns would vary between dilution
treatments.

Attempts to extrapolate experimental findings of
patterns of selective grazing to in situ populations
would be complicated considerably by qualitative dif-
ferences in grazer communities between different
dilution treatments, and between the t, and t,, com-
munities. Dilution experiments have often been em-
ployed to examine not only rates, but also specific
patterns of microzooplankton grazing. Dilution ex-
periments have been used to provide estimates of mor-
tality rates with regard to different size-fractions of
phytoplankton (Kamiyama 1994, Gifford et al. 1995,
Froneman & Perissinotto 1996a,b, Froneman et al.
1996a,b, Gallegos et al. 1996, Strom & Strom 1996,
Froneman & McQuaid 1997, James & Hall 1998,
Kuipers & Witte 1999). For individual phytoplankton
taxa, many mortality rate estimates have been from
dilution experiments with microscopically identified
taxa (e.g., Landry et al. 1993, Fahnenstiel et al. 1995,
Murrell & Hollibaugh 1998, Rivkin et al. 1999) using
pigment data (e.g., McManus & Ederington-Cantrell
1992, Verity et al. 1993, 1996, Waterhouse & Welsch-
meyer 1995, Latasa et al. 1997) or by flow cytometry
(Landry et al. 1995a,b, 1998, Brown et al. 1999). Our
results show distinct differences between grazer com-
munities at the beginning and end of dilution experi-
ments. One might expect the relative importance of
grazing by ‘starvation-resistant forms’ (e.g., small
metazoans, large tintinnids, predacious ciliates) to be
exaggerated compared to the natural grazer communi-
ties in dilution experiments. Therefore, evidence of
selective grazing by microzooplankton, based on dif-
ferences in mortality rates of certain size-fractions of
chlorophyll or individual taxa, in dilution experiments
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Fig. 5. Expt 1. Composition of the tintinnid ciliate community in the different dilution treatments (1 to 0.05) in the t,, samples.
Error bars show the range of the % values in the duplicate samples. Tintinnopsis species appear as 'T.', Eutintinnus species as
‘E', E. sp is about 50 pm in length. Tintinnidium lg is a large Tintinnidium species, possibly T. mucicola. Note the declines in the
relative importance of most of the smaller species with dilution factor. Inset graph shows overall averages of tintinnid lorica
dimensions in the dilution treatments, oral diameter (OD) and lorica length (LL). Average LL was greatest in highly diluted waters

Fig. 6. Expt 2. Composition of the tintinnid ciliate community in the different dilution treatments (1 to 0.05) in the f,; samples.
Error bars show the range of the % values in the duplicate samples. Species as in Fig. 5. Similar to data from Expt 1 (Fig. 5),
smaller species formed a smaller portion of the tintinnid community in samples from the more dilute treatments. Inset graph
shows overall community averages of tintinnid lorica dimensions in the dilution treatments, oral diameter (OD) and lorica length
(LL). Similar to the trend found in Expt 1, average LL increased as food levels decreased, and in this case average LL was signif-
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Table 4. Comparison of estimates of grazing rates (g), phytoplankton growth (k) and the ratio of grazing to growth (g/k) calcu-
lated by regression of apparent chl a growth against (1) dilution factor, (2) average ciliate concentrations (geometric mean preda-
tor density [GMPD)]), (3) ciliate concentrations at the end of the experiment (t,4 [ciliates]). Additional rate estimates were calcu-
lated comparing apparent chlorophyll growth in bottles of undiluted water versus 5% whole water, either uncorrected for ciliate
growth (Raw 100 vs 5%) or corrected (Adj 100 vs 5%). For Expt 2, grazing was also calculated using the Gallegos (1989) equa-
tion which corrects for nonlinear feeding kinetics (NLFK). Rates given +SE

Dilution factor GMPD ty4 [ciliates] Raw 100vs 5%  Adj 100 vs 5% NLFK
Exptl, g 0.58 £ 0.13 0.54 £ 0.13 0.47 £ 0.14 0.39+0.10 0.39+0.13
Expt2, g 0.35+£0.12 0.27 £ 0.10 0.22 £ 0.09 0.36 + 0.07 0.30 £0.05 0.42
Expt1, k 0.92 + 0.08 0.87 £ 0.08 0.82 £ 0.08 0.75+ 0.09 0.75+£0.09
Expt 2, k 0.82 + 0.08 0.80 + 0.07 0.79 £ 0.07 0.91 £ 0.02 0.91 £ 0.02 0.91
Expt 1, g/k 0.63 0.62 0.57 0.52 0.52
Expt 2, g/k 0.43 0.34 0.28 0.40 0.33 0.46

should be viewed with caution as the experiments may
be biased in favor of starvation-resistant grazers.

In our experiments, not only did ciliate community
composition differ among treatments, but the final cili-
ate abundance deviated considerably from dilution
factor. A large part of the deviation of ciliate abun-
dance from dilution factor was due to apparent growth
and mortality of oligotrichs and tintinnids. In both
experiments, the numerically dominant oligotrich and
tintinnid showed differences in apparent growth rates
among treatments, which closely resembled classic
numerical response curves when growth rates were
plotted as a function of prey concentration (Fig. 4).
Despite slightly lower initial chlorophyll concentration
(Table 2), the nanoplankton prey concentrations in
Expt 2 were substantially higher than those in Expt 1
(Fig. 4), coinciding with the observation of nonlinear
feeding kinetics (Fig. 3). Ciliate growth
rates in Expt 2 appeared saturated at

Likewise, maximum mortality rates estimated as
apparent growth rates of ~1.0 to —1.5 d™! are not un-
usual, although little comparative data exist (see Mon-
tagnes 1996, Jeong et al. 1999, Montagnes & Lessard
1999). These high mortality rates are likely due to high
weight-specific metabolic rates of oligotrichs. For
example, the heterotrophic oligotrich Strobilidium spi-
ralis Tespires 2.8 % of cell carbon h™' at 20°C (Stoecker
& Michaels 1991}, and in mixotrophic oligotrichs respi-
ration rates range from 1 to 5% cell carbon h™! (Craw-
ford & Stoecker 1996). If ciliates are unable to replen-
ish cell carbon due to insufficient prey and are
respiring 3% of cell carbon h™!, they would likely suf-
fer high mortality rates within 24 h.

The apparent result of ciliate growth in the undiluted
or slightly diluted vessels, and mortality in the high
dilution treatments was, that dilution factor was a poor
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For the 2 numerically dominant
oligotrich species, estimating thresh-
old and saturating concentrations of
prey gave values falling well within
the range of reported values (Fig. 7).
While it should be noted that pub-
lished data may be biased towards
‘easily cultured’ oligotrichs, the growth
responses of the oligotrichs in our ex-
periments did not appear unusual.

Oligotrich Size (10% umd)

Oligotrich Size (10% ym3)

Fig. 7. Threshold and saturating prey concentrations of oligotrichs: comparison
of the dominant oligotrichs (see Fig. 4) in the dilution experiments (®) with
threshold and saturating prey concentrations (0) reported for a variety of olig-
otrichs (data from Montagnes 1996, Jeong et al. 1999, Montagnes & Lessard
1999). Note that growth response parameters of the oligotrichs from the dilution
experiments do not appear unusual. Interestingly, for oligotrichs, neither mini-
mum nor saturating prey concentrations appear to be related to oligotrich size;
overall averages are 75 ng C ml! for threshold prey concentration and 222 ng C

ml~! for saturating prey concentration
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predictor of ciliate concentration or ciliate grazing
pressure. Comparison of grazing rate estimates made
using dilution factor or estimates of ciliate concentra-
tion suggested that ignoring changes in ciliate concen-
trations overestimates grazing rates (Table 4). Rates
based on simple differences between phytoplankton
growth in whole water and growth in highly diluted
water (100 vs 5 %) were also lower than grazing rates
based on dilution factor, with the exception of the 'raw
100 versus 5 %' rate for Expt 2 (Table 4). In contrast, the
grazing rate calculated on the basis of nonlinear kinet-
ics in Expt 2 was the highest of all. Thus, while dilution
is an elegant and relatively non-intrusive manipula-
tion of the plankton community, the impacts of dilution
on community structure are evidently more far rang-
ing than commonly recognized. The effects of these
changes on grazing rate estimates need further eluci-
dation with modeling studies of more complex food
webs.

For the estimates based on differences in 100 versus
5% whole water, the use of 5% whole water to mea-
sure phytoplankton growth in the absence of grazers
might appear as perhaps providing underestimates.
However, Gallegos & Jordan (1997a) demonstrated
that apparent growth rate of phytoplankton in highly
diluted incubations (fraction unfiltered = 0.05) was a
close approximation to the intrinsic growth rate deter-
mined by solution of the growth equations, whether
linear or nonlinear (Gallegos 1989). Our results show-
ing grazer mortality at high dilution indicate that the
approximation succeeds because 0.05 is close to 0
functionally as well as mathematically. That is, grazing
pressure in a 95 % diluted incubation is even closer to
0 than would be predicted for a dilution factor of 0.05.
This result should be robust in waters of all trophic
states. It might be difficult to apply growth measured
by changes in pigment concentrations in waters of very
low chlorophyll concentrations, but filtration or sample
volumes are easily adjusted to increase detection limits
when examining autofluorescent picoplankton by
microscopy or flow cytometry.

The magnitudes of the differences found in grazing
rate estimates, rates 63 to 93 % of dilution factor rates
(without the exception noted above), may appear mod-
est but differences in growth and mortality we found in
different dilution treatments, which occurred begin-
ning with chlorophyll-rich waters, could be expected
to be larger when working in waters with low chloro-
phyll concentrations. For example, consider an aver-
age threshold prey concentration, below which mor-
tality occurs, of about 75 ng carbon ml! for known
oligotrichs (Fig. 7). If chlorophyll-containing prey rep-
resent but half the ciliate's ration and the carbon to
chlorophyll ratio is 50, mortality will occur at chloro-
phyll concentrations below 0.75 pg chlorophyll -1, It

should be admitted that such calculations involve a
considerable amount of uncertainty and our knowl-
edge of numerical response parameters is perhaps not
based on forms characteristic of all wild populations.
However, these rough calculations support the view
that gradients of ciliate growth and mortality, which
lead to an overestimation of grazing rates, possibly
occur when dilution series bracket chlorophyll concen-
trations of 1 pg chlorophyll 1! or less.

We have argued that dilution experiments can yield
grazing patterns different from natural communities
due to changes in the grazer community during the
experiment. This possibility has long been recognized
(Landry 1993). We have also argued that dilution
experiments probably overestimate ciliate grazing
rates, especially in low chlorophyll waters, using our
experimental data and consideration of known thresh-
old prey concentrations of oligotrichs. Previously,
potential problems identified with the dilution ap-
proach were the artifacts resulting from changes in
grazer abundance in undiluted water (e.g., Gallegos et
al. 1996) and changes in individual grazer activities
(Gallegos 1989, Evans & Paranjape 1992). Thus, grazer
growth in undiluted water is occasionally verified (e.g.,
Landry et al. 1993, Verity et al. 1993), and nonlinear
feeding responses are now commonly considered.
Here we have focused on the phenomenon of different
changes in grazer abundances in the different dilution
treatments.

Aggregate grazer activity, in the form of disappear-
ance rates of fluorescently labelled bacteria (FLB), has
been examined in different dilution treatments
(Landry et al. 1995b). In experiments using waters of
the central equatorial Pacific Ocean, in which Pro-
chlorococcus and Synechococcus dominate the phyto-
plankton, average grazing rates from regressions of
apparent phytoplankton growth against ‘relative graz-
ing’ from FLB disappearance, while not significantly
different, were lower than rates based on ‘dilution
factor' (Landry et al. 1995b, Table 3). Interestingly,
such results suggest that 'dilution effects’ may be
less severe among grazers of picoplankton, presumed
by most authors to be heterotrophic nanoflagellates
(Dolan & Simek 1999).

Beyond detection of possible artifacts in grazing
experiments, the examination of the grazer commu-
nity can provide a wealth of information, Temporal
changes in grazer biomass can be used to infer the effi-
ciencies of transfer between phytoplankton and graz-
ers (e.g., Verity et al. 1993). Knowledge of the size-
structure of the microzooplankton community can also
be valuable as it likely influences exploitation of the
microzooplankton by high trophic levels. For example,
the grazing rates for copepods feeding on tintinnid cil-
iates or non-loricate ciliates apparently vary greatly
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ith ciliate size (e.g., Gifford & Dagg 1988, Cariou
t al. 1999). We urge then that experiments designed
) estimate microzooplankton grazing focus on the
redators as well as the prey.
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