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ABSTRACT: Seasonal variations of pico- and nano-sized marine detrital particles (DAPI Yellow Parti-
cles, DYP) and their relationships with components of the microbial food web were studied from April
1993 to March 1994 in the NW Mediterranean Sea. A hierarchical flexible clustering distinguished 2
major groups of DYP: <10 pm and 10-20 pm. Average abundance and total surface area of <10 pm DYP
in surface waters were 21.6 + 3.2 x 10°1"! and 153 + 55 mm? 1"}, respectively, approximately an order of
magnitude greater than abundances or total surface areas reported for larger detrital particles. Rela-
tionships of DYP, chlorophyll a and micro-organisms were investigated within and among 5 different
hydrographic periods distinguished via vertical temperature gradients. Peak concentrations of <10 pm
DYP occurred in early autumn at the end of stratification. In contrast, DYP 10-20 pm peaked at the
beginning of the stratification period in early June. Correlation analysis revealed only weak relation-
ships between DYP and abundance of bacteria, heterotrophic microflagellates and ciliates. However,
declines in chlorophyll were generally followed by increases in DYP concentrations.
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INTRODUCTION

The role of large detrital particles in oceanic bio-
geochemistry is quite well studied (Fowler & Knauer
1986). In contrast, small detrital particles have received
little attention. The lack of simple methods of observ-
ing pico- and nano-sized detrital particles has likely
hampered studies of these size fractions of detrital par-
ticles. However, some general trends were established
in the 1960s in studies which considered particles
down to the micro- and nano-size range.

Riley (1963) found a bimodal seasonal cycle of
organic aggregates (5 pm to several mm) with peaks in
winter and early summer which he related to the
phytoplankton population in Long Island Sound, USA.
Riley et al. (1964) showed the same phenomenon
between Bermuda and the west coast of Africa. Later,
Riley et al. (1965) observed that numbers of organic
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aggregates (5 pm to several mm) in surface waters of
the Sargasso Sea were relatively small at all times but
showed a slight seasonal variation, with highest values
in winter and spring and lower ones in summer, in gen-
eral agreement with the observed seasonal variations
in phytoplankton. Kane (1967) followed the seasonal
variations of organic aggregates in the Ligurian Sea
(NW Mediterranean). Her data indicated a similar vari-
ation of detritus (10-260 pm) as found by Riley and his
co-workers, in good agreement with phytoplankton
variations. These studies all suggested, by grouping all
particle size-classes together, that detrital particles are
a homogenous pool and are closely linked with phyto-
plankton stocks. However, quantification of the stocks
of pico- and nano-sized particles separately is of
importance because they represent non-living organic
matter with low to negligible sinking velocities.

In the companion paper we present a rapid method
for the quantification of pico- and nano-detrital parti-
cles (Mostajir et al. 1995). Using the DAPI (4'6'-di-
amidino-2-phenylindole) stain, epifluorescence counts
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of DAPI Yellow Particles, DYP, can be made, particles
without the characteristic blue fluorescence of DAPI
conjugated with DNA rich in A-T base pairs. We
showed that more than 90 % of DYP are almost exclu-
sively organic, enzyme-degradable matter and that
they represent an abundant class of degradable
organic particles. Preliminary data indicated that DYP
were distributed very irregularly with depth along an
offshore transect in the Ligurian Sea (Mostajir et al.
1995) suggesting that DYP represent a highly dynamic
stock of particulate matter.

In the present paper we present data on pico- and
nano-sized DYP detrital particles based on weekly
sampling over 1 yr in the Ligurian Sea. Relationships
among different size classes of pico- and nano-DYP
were examined and stocks are compared to those of
living particles in the microbial loop, and chlorophyll a
(chl a) in distinct periods defined by water column
structure. We were interested in examining the rela-
tionship of DYP stocks to chl a and determining
whether periods in which DYP are abundant corre-
spond with periods of high heterotrophic microbial
biomass.

MATERIALS AND METHODS

Sampling. The study site, Point 'B’, is a standard
oceanographic station at the entrance of Villefranche
Bay [43°41'10" N, 7°19'00"E; see Etienne et al. (1991)
for site background]. Samples were taken once a week
from March 31, 1993, to March 30, 1994. Temperature
was measured with a Seabird CTD at 0, 10, 20, 30, 40,
50, 60 and 75 m. Using Niskin bottles, samples for chl a
analysis were taken from 0, 10, 20, 30, 50 and 75 m. For
enumeration of DYP and micro-organisms, samples
were taken from 4 standard depths chosen to corre-
spond with surface waters, the summer thermocline,
the average depth of the chlorophyll maximum and
deep water: 0, 20, 40 and 75 m.

Sample processing. Chl a was analysed following
the protocols of SCOR/UNESCO (1964). DYP enumer-
ation procedures are given in Mostajir et al. (1995).
Briefly, 10 ml water samples were fixed with form-
alin (3% final conc.), stained with DAPI (final conc.
0.25 pg ml™') and immediately drawn down onto a
25 mm black Nuclepore polycarbonate membrane
(0.2 pm pore size) using low vacuum (<0.2 bar). The
filter was placed on a slide, and examined with an
epifluorescence microscope with a 100x Neofluar
objective. Particles were enumerated in size classes of
0.2-2, 2-5, 5-10, 10-15 and 15-20 pm. For each size
class, 100 pico- and nano-DYP were counted. To cal-
culate the surface area of particles they were consid-
ered as circles with diameters as follows for each of

the above size classes, respectively: 1.25, 3.5, 7.5, 12.5
and 17.5 pm. The precision of particle counting is
reported in Mostajir et al. (1995). The standard error,
as a percentage of the mean, ranges from 3 to 66 %
with the relative error increasing with particle size
class. On the same filters prepared for DYP counts,
heterotrophic microorganisms, flagellates and bacte-
ria were counted. Estimates of ciliate microzooplank-
ton were made from 100 ml of sample water, pre-
served with acid Lugol (0.4% final concentration),
sedimented for 24 h and examined with a Zeiss in-
verted microscope.

Data analysis. Characterisation of hydrographic
conditions: Hydrographic periods were distinguished
based on temperature differences between 0 and 75 m
(At), similar to the procedure of Bustillos-Guzmaén et al.
(1995), used for the same site. A MIX+ period was
defined as positive At (deep layers were colder than
surface waters) which occurred in early spring, from
March 31 to April 29, 1993. Following this period, strat-
ification of the water column began and the stratified
period was divided into 3 subdivisions: SEMI+ (semi-
stratified+), a period of rapid increase in surface water
temperature (from May to early June), STRATIFIED
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Fig. 1. (A) Seasonal temperature variations (At) at Point ‘B, a

standard oceanographical station at the mouth of Villefranche

Bay (43°41'10" N, 7°19' 00" E) from March 31, 1993 to March

30, 1994. Different hydrographic periods are indicated.

(B) Vertical profile of temperature at different hydrographic

conditions in 1993. Each point is the mean of all data for each
period in each depth
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(from June to September) and SEMI- (semistratified-)
the beginning of destratification (from September to
end of October). During the SEMI- period, water col-
umn temperature was significantly higher than during
the SEMI+ period. The stratified period merged into
the second MIX+ period (from November to end of
December) as described above. Negative At, mixed
water mass, is called here MIX- (from January to mid
March 1994) with about 13°C at surface and a slight
increase at deeper waters. This period gave way to the
MIX+ period at the end of our annual observation.
Temperature variations in these 5 periods are sum-
marised in Fig. 1A. Fig. 1B shows the vertical tempera-
ture profiles of these 5 periods with data obtained in
1993.

Classification of DYP particles: To investigate nat-
ural groupings among the different detrital size
classes, the data set (5 size classes of DYP in water col-
umn with 52 dates) was standardized. Hierarchical
flexible clustering, with f =-0.25 on a matrix of Euclid-
ean distances among the standardized data was per-
formed according to Legendre & Legendre (1984).

Correlation analyses: A correlation matrix was em-
ployed with 6 variables (<10 pm DYP, 10-20 pm DYP,
chl a, bacteria, heterotrophic flagellates and oligotrich
ciliates) using integrated water column values for each
hydrographic condition and for the whole study period.

RESULTS
Classification of DYP

Results of DYP classification are revealed that 2
major groups can be separated corresponding roughly
to particles <10 pm and >10 pm. The <10 pm group can
be further divided into subgroups by depths with par-
ticles at 0 and 20 m separated from 40 and 75 m (details
not shown).

DYP number and surface area

The number of detrital particles (+ SE) decreased
remarkably with increase in size from 17 + 2 x 10°ml™*
to 9 + 4 ml™! for 0.2-2 um DYP and 15-20 pm DYP,
respectively. Fig. 2A illustrates abundance variations
of DYP at the 4 depths sampled. Generally, particle
concentrations did not differ with depth from 0 to 75 m
(Fig. 2). Total surface area of 2-5 pm DYP was much
larger than other size fraction of DYP at all depths. The
surface area (+ SE) of DYP 2-5 pm ranged from 76 + 11
mm? 1! in surface waters decreasing to 45 + 4 mm? 1!
at 756 m (Fig. 2B).

General trends in DYP concentrations

Reflecting the classification analysis, particles <10 pm
co-varied, all showing marked minima during the
stratified season and peak concentrations often occur-
ring during periods of transition from one hydro-
graphic period to the next (Fig. 3). Among particles
10-20 pm in size, the larger size class (15-20 pm)
occurred sporadically, obscuring general trends. The
smaller size class (10—15 pm) appeared to be distinct
from other size classes as it often showed subsurface
peaks in concentration (Table 1).

General trends in concentrations of micro-organisms

Among microbial populations, bacteria showed the
least variability with depth and a lack of clear seasonal
trends (Fig. 4). Ciliates and heterotrophic microflagel-
lates both generally decreased in abundance with
depth and displayed pronounced periods of maximum
concentration in early spring.
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Fig. 2. Number and surface areas of different size classes of

DYP. (A) Logarithmic plot of annual mean number of DYP; (B)

logarithmic plot of annual mean surface of DYP. Bars repre-
sent standard errors
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Fig. 3. Weekly variations of pico- and nano-detrital particles from March 31, 1993, to March 30, 1994, in the Ligurian Sea,
NW Mediterranean. Particle size (pm): (A) 0.2-2, (B) 2-5, (C) 5-10, (D) €10, (E) 10-15, (F) 15-20, (G) 10-20, (H) 0.2-20

Relationships between DYP, chl a and heterotrophic
microbial organisms

Correlation analysis (Table 2) of integrated water
column values over the whole study period did not
indicate any strong relationships between either of the
major DYP groups and chl a or microbes. Concentra-
tions of <10 pm and >10 pm particles were significantly

related to each other as were chl a and heterotrophic
microflagellates as well as ciliates and heterotrophic
microflagellates. The correlations found overall were
the result of strong relationships between <10 pm and
>10 pm particles during the stratified period and the
correlations of chl a, microflagellates and ciliates dur-
ing mixed water column periods. Among the different
hydrographic periods, the transitional periods between
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Fig. 4. Seasonal variations of (A) bacteria, (B) heterotrophic

flagellates, (C) oligotrich ciliates in different hydrological

conditions from March 31, 1993, to March 30, 1994, in the
Ligurian Sea

stratified and mixed conditions (SEMI+, SEMI-)
showed no strong significant relationship between any
of the parameters. However, during the SEMI- period
a significant relationship between <10 pym DYP and
heterotrophic flagellates was detected as well as a
relationship between <10 pm DYP and ciliates during
the SEMI+ period. Noteworthy was the apparent inde-
pendence of bacterial concentrations except for a weak
correlation with <10 ym DYP during the MIX+ period
of late autumn/early winter.

Analysis of temporal trends of chl a and concentra-
tions of the 2 major groups of DYP (Fig. 5) showed
qualitative similarities. DYP concentrations showed
‘pulses’ similar to those of chl a; marked declines in
chl a concentrations were followed by increases in
DYP in samples taken the following week. The rela-
tionship was qualitative; amplitudes of chl a oscilla-
tions were not quantitatively related to the amplitudes
of DYP oscillations.

DISCUSSION
DYP compared to other particulate organic matter

DYP in the present investigation overlap the lower
size range of detritus (<20 pm) studied by Riley (1963),
Riley et al. (1964, 1965), Kane (1967) and Gordon
(1970) as well as the "Transparent Exopolymer Parti-
cles' (TEP) reported by Passow & Alldredge (1994).
Table 3 summarises data from earlier and recent stud-
ies of particulate matter, as well as for the DYP pre-
sented here. Number and total surface area of <10 pm
DYP reported here are much higher than previously
found for 'micro’ organic aggregates in the NW
Mediterranean (Kane 1967) and other systems as well
(Riley 1963, Riley et al. 1964, 1965, Gordon 1970).
Compared to data from more recent studies on marine
snow, nano- and pico-DYP are considerably more
abundant than 'macro’-sized aggregates, commonly
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Fig. 5. Temporal changes of DYP and chl a during 5 hydro-
graphic periods in Villefranche Bay from March 31, 1993, to
March 30, 1994, based on weekly sampling. The values are
integrated over the water column from surface waters to 75 m.
(A) DYP <10 pm and chl a. Significant correlations between
DYP <10 pm and bacteria (Bac) in MIX+ periods, ciliates (Cil)
in SEMI+ period and heterotrophic flagellates (HF) in SEMI-
period are underlined. (B) 10-20 pm DYP and chl a. Large
DYP were significantly correlated with heterotrophic flagel-
lates in MIX+ periods (see text)
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Table 2. Correlation matrix for 6 variables integrated throughout the water column from 0 to 75 m: chlorophyll a (chl), 2 size
classes of DYP (<10 and 10-20 pm), bacteria (Bac), heterotrophic flagellates (HF) and oligotrich ciliates (Cil) throughout the entire
study period and within different hydrographic periods. Underlined values with * and ** are significant at p = 0.05 and p = 0.01

levels, respectively

WHOLE PERIOD (n = 52) STRATIFIED (n = 13)
Chl <10 10-20 Bac HF Cil Chl <10 10-20 Bac  HF cil
Chl 1 Chl 1
<10 -0.083 <10 0.248 1
10-20 019  0.454** 1 10-20 0228  0.854** 1
Bac 0.062 -0.05  0.086 1 Bac 0.17  0.029 -0.166 1
HF 0.458** 0.297* 0.258  0.194 1 HF 0.591* 0.09 -0.068 0.46 1
Cil 0.309* -0.143 -0.009 0.097 0.391** 1 cil 0.077  0.051 -0.215 0.269 0.483 1
SEMI+ (n = 5) SEMI- (n = 8)
Chl <10  10-20  Bac HF cil Chl <10  10-20 Bac  HF cil
Chl 1 Chl 1
<10 -0.484 1 <10 -0.144 1
10-20  0.281  0.433 1 10-20 -0.381  0.751* 1
Bac -0.097 -0.418 0.201 1 Bac 0.457 -0.376 -0.489 1
HF 0.323 0319 -0.053 -0.896* 1 HF -0.056  0.803* 0.513 -0.641 1
cil -0.791  0.892* 0.087 -0.34  0.097 1 cil 0.676 -0.133 -0.165 0.645 -0.343 1
MIX+ (n = 16) MIX~- (n = 10)
Chl <10 10-20 Bac HF cil Chl <10  10-20 Bac  HF cil
Chl 1 Chl 1
<10 -0.134 1 <10 -0.072 1
10-20  0.478  0.386 1 10-20  0.079  0.874** 1
Bac 0.107  0.515* 0.461 1 Bac 0.472  0.166 0.148 1
HF 0.502* 0247 0.574* 0.553* 1 HF 0.773** 0.053 0364 0.514 1
cil 0.701**-0.233 043  0.06  0.631** 1 cil 0.252 -0.537 -0.278 -0.114 0.086 i

reported in concentrations of 1 to 10 I"! (Alldredge &
Silver 1988) and rarely more abundant than 291 to 489
I'! (Wells & Shanks 1987). The size range of DYP over-
laps the lower size range of TEP (Passow & Alldredge
1994), although the abundance of DYP in the Mediter-
ranean Sea is higher than TEP reported from other sys-
tems. However, compared to smaller ‘particles’, colloid
aggregates >1 pm have been reported with a concen-
tration of 10° colloid aggregates ml™! (Wells & Gold-
berg 1993), which is about the same order of magni-
tude as DYP <10 nm in the present study. It should be
noted that smaller colloids are much more abundant
than colloid aggregates (Table 3).

In terms of particle surface area, DYP <10 pm appear
to be more abundant than, or about equal to, larger
organic aggregates based on previous reports. For
example, total area of DYP <10 pm given here com-
pared to surface areas of organic aggregates reported
by Riley (1963) for Long Island Sound are of the same
order of magnitude (Table 3). The surface area of all
other organic aggregates from other sites (reported by
Riley et al. 1965, Kane 1967 and Gordon 1970) are

about an order of magnitude less than those of DYP
<10 pm reported here (Table 3).

Total area of DYP <10 pm and that of TEP reported
by Passow & Alldredge (1994) from 3 different systems
are also of the same order of magnitude (43 to 278 mm?
I"! of DYP compared with 0.2 to 650 mm? 1-! of TEP).
However, the authors emphasized that total area of
TEP can vary by 4 orders of magnitude (0.2 to 2000
mm? 1) and high concentrations of TEP were associ-
ated with flocculating diatom blooms (Alldredge et al.
1993).

DYP in the Ligurian Sea

The present investigation suggests a classification of
DYP into 2 groups with possible different origins. Hier-
archical clustering classification separated the small
<10 pm DYP from the larger ones. Peaks of <10 pm
DYP (Fig. 5A) were observed during hydrographic
shift periods (e.g. between MIX+ and SEMI+, SEMI+
and STRATIFIED). In these periods, chl a decreased



274 Aquat microb Ecol 9: 267-277, 1995

Table 3. Comparison of the numbers and total surface areas of DYP <10 pm with reports of particulate matter from early and
recent studies

Particles Number (x 10% 1) Total area (mm?17!) Study site Source

(size range) Range Mean Range Mean

Organic aggregates 30-100 - 23-167 - Long Island Sound, USA Riley (1963)

(5 pm to several mm) (coastal)

Organic aggregates 8-40 11.32 3-9.9 - N Equatorial Current Riley et al. (1965)

(5 pm to several mm) (open sea)

Organic aggregates - - 3-38 - Guinea Current Riley et al. (1965)

(5 pm to several mm) (open sea)

Organic aggregates 30-100 - - - Off west coast of Africa Riley et al. (1965)

(5 pm to several mm) (coastal)

Organic aggregates 1.9-64 12,5 1-52 11.5 Ligurian Sea, off Monaco Kane (1967)

(10-260 pm) (coastal)

Organic aggregates 1.9-15 6.3 1-10 4.6 Ligurian Sea, off Monaco Kane (1967)

(10-260 pm) (open sea)

Organic aggregates 32-235 - - - N Atlantic Ocean, from Gordon (1970)

(<5 pm) Sargasso Sea to Irminger Sea

Marine snow 0-8x 1073 - - - Santa Barbara, CA, USA Alldredge (1979). For

(>500 pm) more details see All-
dredge & Silver (1988)

Marine snow - 7.0+£1.2x1073 - - NE Atlantic Ocean Shanks & Trent (1980)

(4 £ 5 mm)

TEP 10%-10* - 0.2-2000 - Monterey Bay-Santa Passow & Alldredge

(3 to several 100 pm) Barbara-Bermuda (1994)

DYP 744-112516 21619+3237 43-278 153+55 Ligurian sea off Villefranche This study

(0.2-10 pm) (coastal) surface waters

Sub-micron particles 5-8 x 107 - - - N Pacific Ocean Koike et al. (1990)

(0.38-1 pm) (top 40 m)

Sub-micron particles - 1.43-2.35 x 107 - - NW Atlantic shelf water Longhurst et al. (1992)

(0.36-1.01 pm) (offshore; 10 m)

Colloid aggregates - 10° - - Atlantic and Pacific Oceans =~ Wells & Goldberg

(>1.0 pm) (mid-depth and deep waters) (1993)

Colloids = 10° - - N Atlantic and Southern Wells & Goldberg

(0.005-0.2 pnm) Oceans (1994)

sharply, presumably due to sedimentation of phyto-
planktonic cells or intensive grazing by heterotrophic
organisms. In either case the occurrence of large quan-
tities of detrital particles (mortality of phytoplanktonic
cells, faecal production and carcasses of organisms) is
not surprising. In contrast to isolated peaks before
stratification, at the end of long stratification in the
SEMI- period, 2 large peaks of <10 pm DYP were also
observed in September and October (the second one
was the highest for the studied year). In this period,
chl a was lowest (0.34 + 0.01 pg I'!) and did not show
any sharp shifts. Therefore, in this period the high

amount of <10 pm DYP cannot be explained by a drop
in chl a. Thus, there was probably another source of
<10 pm DYP in the SEMI- period. Abundance trends
of DYP >10 pm appeared to track chl a more closely
than smaller particles (Fig. 5B) but over the entire
study period there was no significant correlation.

Sources of DYP and its trophic importance may vary
seasonally. For example, large DYP (10-20 pm) were
correlated only with heterotrophic flagellates in the
MIX+ period and no other correlation of these large
DYP was observed at any time with microbes (see
Table 2).
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The <10 pm DYP correlation with bacteria, hetero-
trophic flagellates and ciliates is even more interest-
ing. During the MIX+ period, bacteria were signifi-
cantly correlated with this small DYP. During the
SEMI- period, heterotrophic flagellates were signifi-
cantly correlated with <10 pm DYP and not with any
other parameters investigated here (Table 2). This sig-
nificant correlation occurred during the SEMI+ period
between ciliates and <10 pm DYP. This suggests a vari-
able linkage of DYP with the microbial food web dur-
ing certain periods.

Speculations on the origins and fates of DYP

The idea that particulate organic matter (POM) may
be formed via coagulation by bubbling of dissolved
organic carbon (DOC) has been discussed for over
30 yr. Riley (1963), Sutcliffe et al. (1963), Riley et al.
(1964), Barber (1966), Batoosingh et al. (1969), Corner
et al. (1974), Biddanda (1985), and Kepkay & Johnson
(1988, 1989) all provided some evidence on the conver-
sion of dissolved organic matter (DOM) to POM by
bubbling. More recently, Wells & Goldberg (1994) pro-
posed a likely primary source of marine colloids as the
agglomeration of some fraction of the truly dissolved
organic phase.

In the NW Mediterranean, at least, DOC concentra-
tions appear dynamic. Copin-Montégut & Avril (1993)
detailed monthly vertical profiles of DOC 28 miles off-
shore of Villefranche. These authors concluded that
DOC accumulated in surface waters throughout the
stratified period and was then dispersed through water
column mixing. Thus, considering wind forcing at the
end of the stratified period on water mass mixing, it
may be hypothesized that adsorption on bubbles could
produce directly or indirectly the DYP that we ob-
served during destratification (e.g. DOC adsorption on
bubbles and production of colloids, and then agglom-
eration of colloids giving DYP).

In the SEMI- period, surface waters cooled due to
wind stress, and consequently water column mixing
began. In this period, the high observed value of
<10 pym DYP might be explained by physical mecha-
nisms (conversion of DOC to DYP). Two peaks of
<10 pm DYP in the SEMI- period were followed by a
10-20 pm DYP peak. The sharp decrease of <10 pm
DYP at the end of this period coincided with a third
peak of DYP 10-20 pm. These fluctuations could be
explained by a scenario in which <10 ym DYP forma-
tion (in the way of coagulation of DOC on bubble sur-
faces) was followed by the formation of large DYP. Two
high peaks of <10 pm DYP were followed by another
one in the MIX+ condition. During this period, chl a
decreased. Disaggregation of 10-20 pm DYP formed at

the end of SEMI- period could explain this peak of
<10 pm DYP. This case fits in the detritus cycle scheme
suggested by Biddanda & Pomeroy (1988) with distinct
phases of aggregation, disaggregation, re-aggregation
and finally sinking out of the water column.

In the MIX- period the peaks of DYP seem to be reg-
ular especially for 10-20 pm detrital particles. In other
words, during the MIX- period, DYP variations corre-
spond with the scheme proposed by Biddanda &
Pomeroy (1988). Nevertheless, in contrast with the fate
of detritus in Biddanda & Pomeroy's scheme, DYP do
not seem to sink to the deep layer, at least in the NW
Mediterranean. Miquel et al. (1994), employing sedi-
ment trap data, presented the dynamics of the down-
ward flux of particles and carbon in the open NW
Mediterranean Sea. These authors did not observe a
high value of downward particulate mass flux at the
end of the stratified condition where <10 pm DYP
peaked sharply.

Another possible source of DYP could be protozoan
egesta. This idea corresponds with the hypothesis of
Nagata & Kirchman (1992) that flagellates release their
own digestive enzymes and incompletely digested
membranes and probably other cellular components
from bacterial prey. Indeed, several authors have
reported on small particle production by protozoa
(Stoecker 1984, Nothig & von Bodungen 1989, Buck et
al. 1990, Elbrachter 1991, Gonzéalez 1992, Buck & New-
ton 1995).

Concerning possible settling rates of DYP, little com-
parative data is available. Some values of settling rates
of organic aggregates have been given in the litera-
ture: 1 to 7 m d™! (Riley et al. 1965), 0.14 to 12 m d!
(Hobson 1967), 0.10 to 0.57 m d! for particles of 2 to
6 pm (Riley 1970). Such settling rates are much lower
than those found for diatoms, 100 to 150 m d~! (Billet et
al. 1983), zooplankton faeces, 29 to 122 m d™' (Loren-
zen & Welschmeyer 1983, Fowler et al. 1987) and
marine snow aggregates, 50 to 100 m d~! (Shanks &
Trent 1980, Alldredge & Gotschalk 1990). This sug-
gests that small particles are probably distributed
solely by advection; settling becomes more important
with progressively larger particles (Gordon 1970).

Trophic interactions between detritus and micro-
organisms were investigated by several authors. Riley
(1963) was among the first to suggest that organic
aggregates provide a substrate for bacterial growth
and probably food for zooplankton. Several authors
reported a rapid bacterial colonization of detritus fol-
lowed by the development of protozoa. Detrital parti-
cles, colonized by bacteria, can come from different
sources including phytoplankton (Hoppe 1981, Linley
& Newell 1984, Fukami et al. 1985), zooplankton
(Fukami et al. 1985), faecal pellets (Pomeroy & Diebel
1980, Jacobsen & Azam 1984) and organic particle



276 Aquat microb Ecol 9: 267-277, 1995

WIND
STRESS

otz yilsoit hog—Sueals giaw setslianst-g

00 %

ey

00 R FDo

=}

O (TR,
wiiPrimary & Secondary
¢ Production. Mortality &2
SO S S Sa  To

(increasing after stratification)
coagulation by bubbling

{ Heterotrophic flagellates )
\ consumption

Advection

generation by surface coagulation (Kepkay & Johnson
1988, 1989). We think that DYP, with their seemingly
negligible settling rate and their large surface/volume
ratio, could be a significant resource in supplying
nutrients for the regenerated production in planktonic
systems. The relatively large amounts of DYP in the
water column indicate a potentially important role for
these particles as one of the sources for remineraliza-
tion processes within the microbial food web.

Fig. 6 shows a speculative schematic model of a
‘detrital loop' and summarises our discussion about ori-
gins, trophic importance, fate and interactions of DYP
in the microbial food web through the water column.
As this scheme illustrates, there are at least 2 possible
origins of DYP formation. One is the primary and sec-
ondary production as suggested by Biddanda &
Pomeroy (1988). Indeed, the mortality of organisms
could add to this source. The second is DOC which can
be converted to DYP <10 pm via coagulation by bub-
bling. This phenomenon could be important after a
stratification period in which DOC increased in surface
water followed by a period of wind-driven mixing.
There appear to be qualitative differences between
DYP <10 pm and larger DYP as smaller DYP are much
less intensively colonized by bacteria (Mostajir et al.
1995). Aggregation of DYP <10 pm to DYP 10-20 pm
could be either a purely physical phenomenon or a bio-
logical process or both. Some DYP <10 pm could leave
the system by advection. The origin of DYP 10-20 pm
is possibly the result of DYP <10 pm aggregation, or
direct production by primary or secondary producers.
The fate of DYP 10-20 pm is potentially disaggrega-
tion, producing DYP <10 pm, or exiting from the sys-
tem via settling or advection.

and Heterotrophic
flagellates consumption 4

Fig. 6. Speculative schem-

i b atic model of the 'detrital
""" loop’ indicating origins,
trophic importance, fate
and interactions of DYP in
the microbial food web
through the water column.
See 'Discussion’ for details
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